Metamath Proof Explorer


Theorem cxplead

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φA
cxplead.2 φ1A
cxplead.3 φB
cxplead.4 φC
cxplead.5 φBC
Assertion cxplead φABAC

Proof

Step Hyp Ref Expression
1 recxpcld.1 φA
2 cxplead.2 φ1A
3 cxplead.3 φB
4 cxplead.4 φC
5 cxplead.5 φBC
6 cxplea A1ABCBCABAC
7 1 2 3 4 5 6 syl221anc φABAC