Metamath Proof Explorer


Theorem cxpnegd

Description: Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 φA
cxpefd.2 φA0
cxpefd.3 φB
Assertion cxpnegd φAB=1AB

Proof

Step Hyp Ref Expression
1 cxp0d.1 φA
2 cxpefd.2 φA0
3 cxpefd.3 φB
4 cxpneg AA0BAB=1AB
5 1 2 3 4 syl3anc φAB=1AB