Metamath Proof Explorer


Theorem cyc2fvx

Description: Function value of a 2-cycle outside of its orbit. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c C=toCycD
cycpm3.s S=SymGrpD
cycpm3.d φDV
cycpm3.i φID
cycpm3.j φJD
cycpm3.k φKD
cycpm3.1 φIJ
cycpm3.2 φJK
cycpm3.3 φKI
Assertion cyc2fvx φC⟨“IJ”⟩K=K

Proof

Step Hyp Ref Expression
1 cycpm3.c C=toCycD
2 cycpm3.s S=SymGrpD
3 cycpm3.d φDV
4 cycpm3.i φID
5 cycpm3.j φJD
6 cycpm3.k φKD
7 cycpm3.1 φIJ
8 cycpm3.2 φJK
9 cycpm3.3 φKI
10 4 5 s2cld φ⟨“IJ”⟩WordD
11 4 5 7 s2f1 φ⟨“IJ”⟩:dom⟨“IJ”⟩1-1D
12 8 necomd φKJ
13 9 12 nelprd φ¬KIJ
14 4 5 s2rn φran⟨“IJ”⟩=IJ
15 13 14 neleqtrrd φ¬Kran⟨“IJ”⟩
16 1 3 10 11 6 15 cycpmfv3 φC⟨“IJ”⟩K=K