Metamath Proof Explorer


Theorem dalawlem10

Description: Lemma for dalaw . Combine dalawlem5 , dalawlem8 , and dalawlem9 . (Contributed by NM, 6-Oct-2012)

Ref Expression
Hypotheses dalawlem.l ˙=K
dalawlem.j ˙=joinK
dalawlem.m ˙=meetK
dalawlem.a A=AtomsK
Assertion dalawlem10 KHL¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S

Proof

Step Hyp Ref Expression
1 dalawlem.l ˙=K
2 dalawlem.j ˙=joinK
3 dalawlem.m ˙=meetK
4 dalawlem.a A=AtomsK
5 simp11 KHL¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAKHL
6 simp12 KHL¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUA¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙P
7 3oran P˙S˙Q˙T˙P˙QP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙P¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙P
8 6 7 sylibr KHL¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙P
9 simp13 KHL¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙R˙U
10 simp2 KHL¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAPAQARA
11 simp3 KHL¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUASATAUA
12 1 2 3 4 dalawlem5 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
13 12 3expib KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
14 13 3exp KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
15 1 2 3 4 dalawlem8 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
16 15 3expib KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
17 16 3exp KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
18 1 2 3 4 dalawlem9 KHLP˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
19 18 3expib KHLP˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
20 19 3exp KHLP˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
21 14 17 20 3jaod KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
22 21 3imp KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
23 22 3impib KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
24 5 8 9 10 11 23 syl311anc KHL¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S