| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalawlem.l |
|
| 2 |
|
dalawlem.j |
|
| 3 |
|
dalawlem.m |
|
| 4 |
|
dalawlem.a |
|
| 5 |
|
simp11 |
|
| 6 |
5
|
hllatd |
|
| 7 |
|
simp22 |
|
| 8 |
|
simp32 |
|
| 9 |
|
eqid |
|
| 10 |
9 2 4
|
hlatjcl |
|
| 11 |
5 7 8 10
|
syl3anc |
|
| 12 |
|
simp21 |
|
| 13 |
|
simp31 |
|
| 14 |
9 2 4
|
hlatjcl |
|
| 15 |
5 12 13 14
|
syl3anc |
|
| 16 |
9 3
|
latmcom |
|
| 17 |
6 11 15 16
|
syl3anc |
|
| 18 |
|
simp12 |
|
| 19 |
|
simp23 |
|
| 20 |
2 4
|
hlatjcom |
|
| 21 |
5 19 12 20
|
syl3anc |
|
| 22 |
18 21
|
breqtrd |
|
| 23 |
17 22
|
eqbrtrd |
|
| 24 |
|
simp13 |
|
| 25 |
17 24
|
eqbrtrd |
|
| 26 |
|
simp33 |
|
| 27 |
1 2 3 4
|
dalawlem8 |
|
| 28 |
5 23 25 7 12 19 8 13 26 27
|
syl333anc |
|
| 29 |
2 4
|
hlatjcom |
|
| 30 |
5 12 7 29
|
syl3anc |
|
| 31 |
2 4
|
hlatjcom |
|
| 32 |
5 13 8 31
|
syl3anc |
|
| 33 |
30 32
|
oveq12d |
|
| 34 |
9 2 4
|
hlatjcl |
|
| 35 |
5 7 19 34
|
syl3anc |
|
| 36 |
9 2 4
|
hlatjcl |
|
| 37 |
5 8 26 36
|
syl3anc |
|
| 38 |
9 3
|
latmcl |
|
| 39 |
6 35 37 38
|
syl3anc |
|
| 40 |
9 2 4
|
hlatjcl |
|
| 41 |
5 19 12 40
|
syl3anc |
|
| 42 |
9 2 4
|
hlatjcl |
|
| 43 |
5 26 13 42
|
syl3anc |
|
| 44 |
9 3
|
latmcl |
|
| 45 |
6 41 43 44
|
syl3anc |
|
| 46 |
9 2
|
latjcom |
|
| 47 |
6 39 45 46
|
syl3anc |
|
| 48 |
2 4
|
hlatjcom |
|
| 49 |
5 26 13 48
|
syl3anc |
|
| 50 |
21 49
|
oveq12d |
|
| 51 |
2 4
|
hlatjcom |
|
| 52 |
5 7 19 51
|
syl3anc |
|
| 53 |
2 4
|
hlatjcom |
|
| 54 |
5 8 26 53
|
syl3anc |
|
| 55 |
52 54
|
oveq12d |
|
| 56 |
50 55
|
oveq12d |
|
| 57 |
47 56
|
eqtrd |
|
| 58 |
28 33 57
|
3brtr4d |
|