Metamath Proof Explorer


Theorem dalawlem9

Description: Lemma for dalaw . Special case to eliminate the requirement -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) in dalawlem1 . (Contributed by NM, 6-Oct-2012)

Ref Expression
Hypotheses dalawlem.l = ( le ‘ 𝐾 )
dalawlem.j = ( join ‘ 𝐾 )
dalawlem.m = ( meet ‘ 𝐾 )
dalawlem.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion dalawlem9 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) ) ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) )

Proof

Step Hyp Ref Expression
1 dalawlem.l = ( le ‘ 𝐾 )
2 dalawlem.j = ( join ‘ 𝐾 )
3 dalawlem.m = ( meet ‘ 𝐾 )
4 dalawlem.a 𝐴 = ( Atoms ‘ 𝐾 )
5 simp11 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝐾 ∈ HL )
6 5 hllatd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝐾 ∈ Lat )
7 simp22 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑄𝐴 )
8 simp32 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑇𝐴 )
9 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
10 9 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴 ) → ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
11 5 7 8 10 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
12 simp21 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑃𝐴 )
13 simp31 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑆𝐴 )
14 9 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴 ) → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
15 5 12 13 14 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
16 9 3 latmcom ( ( 𝐾 ∈ Lat ∧ ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) = ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) )
17 6 11 15 16 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) = ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) )
18 simp12 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) )
19 simp23 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑅𝐴 )
20 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴 ) → ( 𝑅 𝑃 ) = ( 𝑃 𝑅 ) )
21 5 19 12 20 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑅 𝑃 ) = ( 𝑃 𝑅 ) )
22 18 21 breqtrd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑅 ) )
23 17 22 eqbrtrd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) ( 𝑃 𝑅 ) )
24 simp13 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) )
25 17 24 eqbrtrd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) ( 𝑅 𝑈 ) )
26 simp33 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑈𝐴 )
27 1 2 3 4 dalawlem8 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) ( 𝑃 𝑅 ) ∧ ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑄𝐴𝑃𝐴𝑅𝐴 ) ∧ ( 𝑇𝐴𝑆𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑃 ) ( 𝑇 𝑆 ) ) ( ( ( 𝑃 𝑅 ) ( 𝑆 𝑈 ) ) ( ( 𝑅 𝑄 ) ( 𝑈 𝑇 ) ) ) )
28 5 23 25 7 12 19 8 13 26 27 syl333anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑃 ) ( 𝑇 𝑆 ) ) ( ( ( 𝑃 𝑅 ) ( 𝑆 𝑈 ) ) ( ( 𝑅 𝑄 ) ( 𝑈 𝑇 ) ) ) )
29 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
30 5 12 7 29 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
31 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴 ) → ( 𝑆 𝑇 ) = ( 𝑇 𝑆 ) )
32 5 13 8 31 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑆 𝑇 ) = ( 𝑇 𝑆 ) )
33 30 32 oveq12d ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) ) = ( ( 𝑄 𝑃 ) ( 𝑇 𝑆 ) ) )
34 9 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴 ) → ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
35 5 7 19 34 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
36 9 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴 ) → ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) )
37 5 8 26 36 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) )
38 9 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) )
39 6 35 37 38 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) )
40 9 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴 ) → ( 𝑅 𝑃 ) ∈ ( Base ‘ 𝐾 ) )
41 5 19 12 40 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑅 𝑃 ) ∈ ( Base ‘ 𝐾 ) )
42 9 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴 ) → ( 𝑈 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
43 5 26 13 42 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑈 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
44 9 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑅 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑈 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) )
45 6 41 43 44 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) )
46 9 2 latjcom ( ( 𝐾 ∈ Lat ∧ ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) = ( ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ) )
47 6 39 45 46 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) = ( ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ) )
48 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴 ) → ( 𝑈 𝑆 ) = ( 𝑆 𝑈 ) )
49 5 26 13 48 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑈 𝑆 ) = ( 𝑆 𝑈 ) )
50 21 49 oveq12d ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) = ( ( 𝑃 𝑅 ) ( 𝑆 𝑈 ) ) )
51 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴 ) → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
52 5 7 19 51 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
53 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴 ) → ( 𝑇 𝑈 ) = ( 𝑈 𝑇 ) )
54 5 8 26 53 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑇 𝑈 ) = ( 𝑈 𝑇 ) )
55 52 54 oveq12d ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) = ( ( 𝑅 𝑄 ) ( 𝑈 𝑇 ) ) )
56 50 55 oveq12d ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ) = ( ( ( 𝑃 𝑅 ) ( 𝑆 𝑈 ) ) ( ( 𝑅 𝑄 ) ( 𝑈 𝑇 ) ) ) )
57 47 56 eqtrd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) = ( ( ( 𝑃 𝑅 ) ( 𝑆 𝑈 ) ) ( ( 𝑅 𝑄 ) ( 𝑈 𝑇 ) ) ) )
58 28 33 57 3brtr4d ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑃 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) ) ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) )