Metamath Proof Explorer


Theorem dalem11

Description: Lemma for dath . Analogue of dalem10 for E . (Contributed by NM, 23-Jul-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem11.m ˙=meetK
dalem11.o O=LPlanesK
dalem11.y Y=P˙Q˙R
dalem11.z Z=S˙T˙U
dalem11.x X=Y˙Z
dalem11.e E=Q˙R˙T˙U
Assertion dalem11 φE˙X

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem11.m ˙=meetK
6 dalem11.o O=LPlanesK
7 dalem11.y Y=P˙Q˙R
8 dalem11.z Z=S˙T˙U
9 dalem11.x X=Y˙Z
10 dalem11.e E=Q˙R˙T˙U
11 1 2 3 4 7 8 dalemrot φKHLCBaseKQARAPATAUASAQ˙R˙POT˙U˙SO¬C˙Q˙R¬C˙R˙P¬C˙P˙Q¬C˙T˙U¬C˙U˙S¬C˙S˙TC˙Q˙TC˙R˙UC˙P˙S
12 biid KHLCBaseKQARAPATAUASAQ˙R˙POT˙U˙SO¬C˙Q˙R¬C˙R˙P¬C˙P˙Q¬C˙T˙U¬C˙U˙S¬C˙S˙TC˙Q˙TC˙R˙UC˙P˙SKHLCBaseKQARAPATAUASAQ˙R˙POT˙U˙SO¬C˙Q˙R¬C˙R˙P¬C˙P˙Q¬C˙T˙U¬C˙U˙S¬C˙S˙TC˙Q˙TC˙R˙UC˙P˙S
13 eqid Q˙R˙P=Q˙R˙P
14 eqid T˙U˙S=T˙U˙S
15 eqid Q˙R˙P˙T˙U˙S=Q˙R˙P˙T˙U˙S
16 12 2 3 4 5 6 13 14 15 10 dalem10 KHLCBaseKQARAPATAUASAQ˙R˙POT˙U˙SO¬C˙Q˙R¬C˙R˙P¬C˙P˙Q¬C˙T˙U¬C˙U˙S¬C˙S˙TC˙Q˙TC˙R˙UC˙P˙SE˙Q˙R˙P˙T˙U˙S
17 11 16 syl φE˙Q˙R˙P˙T˙U˙S
18 1 3 4 dalemqrprot φQ˙R˙P=P˙Q˙R
19 7 18 eqtr4id φY=Q˙R˙P
20 1 dalemkehl φKHL
21 1 dalemtea φTA
22 1 dalemuea φUA
23 1 dalemsea φSA
24 3 4 hlatjrot KHLTAUASAT˙U˙S=S˙T˙U
25 20 21 22 23 24 syl13anc φT˙U˙S=S˙T˙U
26 8 25 eqtr4id φZ=T˙U˙S
27 19 26 oveq12d φY˙Z=Q˙R˙P˙T˙U˙S
28 9 27 eqtrid φX=Q˙R˙P˙T˙U˙S
29 17 28 breqtrrd φE˙X