Description: Lemma for dath . Analogue of dalem10 for E . (Contributed by NM, 23-Jul-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalema.ph | |
|
dalemc.l | |
||
dalemc.j | |
||
dalemc.a | |
||
dalem11.m | |
||
dalem11.o | |
||
dalem11.y | |
||
dalem11.z | |
||
dalem11.x | |
||
dalem11.e | |
||
Assertion | dalem11 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | |
|
2 | dalemc.l | |
|
3 | dalemc.j | |
|
4 | dalemc.a | |
|
5 | dalem11.m | |
|
6 | dalem11.o | |
|
7 | dalem11.y | |
|
8 | dalem11.z | |
|
9 | dalem11.x | |
|
10 | dalem11.e | |
|
11 | 1 2 3 4 7 8 | dalemrot | |
12 | biid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | 12 2 3 4 5 6 13 14 15 10 | dalem10 | |
17 | 11 16 | syl | |
18 | 1 3 4 | dalemqrprot | |
19 | 7 18 | eqtr4id | |
20 | 1 | dalemkehl | |
21 | 1 | dalemtea | |
22 | 1 | dalemuea | |
23 | 1 | dalemsea | |
24 | 3 4 | hlatjrot | |
25 | 20 21 22 23 24 | syl13anc | |
26 | 8 25 | eqtr4id | |
27 | 19 26 | oveq12d | |
28 | 9 27 | eqtrid | |
29 | 17 28 | breqtrrd | |