Metamath Proof Explorer


Theorem dalem10

Description: Lemma for dath . Atom D belongs to the axis of perspectivity X . (Contributed by NM, 19-Jul-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem10.m ˙=meetK
dalem10.o O=LPlanesK
dalem10.y Y=P˙Q˙R
dalem10.z Z=S˙T˙U
dalem10.x X=Y˙Z
dalem10.d D=P˙Q˙S˙T
Assertion dalem10 φD˙X

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem10.m ˙=meetK
6 dalem10.o O=LPlanesK
7 dalem10.y Y=P˙Q˙R
8 dalem10.z Z=S˙T˙U
9 dalem10.x X=Y˙Z
10 dalem10.d D=P˙Q˙S˙T
11 1 dalemkelat φKLat
12 1 3 4 dalempjqeb φP˙QBaseK
13 1 4 dalemreb φRBaseK
14 eqid BaseK=BaseK
15 14 2 3 latlej1 KLatP˙QBaseKRBaseKP˙Q˙P˙Q˙R
16 11 12 13 15 syl3anc φP˙Q˙P˙Q˙R
17 1 3 4 dalemsjteb φS˙TBaseK
18 1 4 dalemueb φUBaseK
19 14 2 3 latlej1 KLatS˙TBaseKUBaseKS˙T˙S˙T˙U
20 11 17 18 19 syl3anc φS˙T˙S˙T˙U
21 1 6 dalemyeb φYBaseK
22 7 21 eqeltrrid φP˙Q˙RBaseK
23 1 dalemzeo φZO
24 14 6 lplnbase ZOZBaseK
25 23 24 syl φZBaseK
26 8 25 eqeltrrid φS˙T˙UBaseK
27 14 2 5 latmlem12 KLatP˙QBaseKP˙Q˙RBaseKS˙TBaseKS˙T˙UBaseKP˙Q˙P˙Q˙RS˙T˙S˙T˙UP˙Q˙S˙T˙P˙Q˙R˙S˙T˙U
28 11 12 22 17 26 27 syl122anc φP˙Q˙P˙Q˙RS˙T˙S˙T˙UP˙Q˙S˙T˙P˙Q˙R˙S˙T˙U
29 16 20 28 mp2and φP˙Q˙S˙T˙P˙Q˙R˙S˙T˙U
30 7 8 oveq12i Y˙Z=P˙Q˙R˙S˙T˙U
31 9 30 eqtri X=P˙Q˙R˙S˙T˙U
32 29 10 31 3brtr4g φD˙X