Metamath Proof Explorer


Theorem dalem18

Description: Lemma for dath . Show that a dummy atom c exists outside of the Y and Z planes (when those planes are equal). This requires that the projective space be 3-dimensional. (Desargues's theorem does not always hold in 2 dimensions.) (Contributed by NM, 29-Jul-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem18.y Y=P˙Q˙R
Assertion dalem18 φcA¬c˙Y

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem18.y Y=P˙Q˙R
6 1 dalemkehl φKHL
7 1 dalempea φPA
8 1 dalemqea φQA
9 1 dalemrea φRA
10 3 2 4 3dim3 KHLPAQARAcA¬c˙P˙Q˙R
11 6 7 8 9 10 syl13anc φcA¬c˙P˙Q˙R
12 5 breq2i c˙Yc˙P˙Q˙R
13 12 notbii ¬c˙Y¬c˙P˙Q˙R
14 13 rexbii cA¬c˙YcA¬c˙P˙Q˙R
15 11 14 sylibr φcA¬c˙Y