Metamath Proof Explorer


Theorem dalem28

Description: Lemma for dath . Lemma dalem27 expressed differently. (Contributed by NM, 4-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem23.m ˙=meetK
dalem23.o O=LPlanesK
dalem23.y Y=P˙Q˙R
dalem23.z Z=S˙T˙U
dalem23.g G=c˙P˙d˙S
Assertion dalem28 φY=ZψP˙G˙c

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem23.m ˙=meetK
7 dalem23.o O=LPlanesK
8 dalem23.y Y=P˙Q˙R
9 dalem23.z Z=S˙T˙U
10 dalem23.g G=c˙P˙d˙S
11 1 2 3 4 5 6 7 8 9 10 dalem27 φY=Zψc˙G˙P
12 1 dalemkehl φKHL
13 12 3ad2ant1 φY=ZψKHL
14 5 dalemccea ψcA
15 14 3ad2ant3 φY=ZψcA
16 1 dalempea φPA
17 16 3ad2ant1 φY=ZψPA
18 1 2 3 4 5 6 7 8 9 10 dalem23 φY=ZψGA
19 1 2 3 4 5 6 7 8 9 10 dalem25 φY=ZψcG
20 2 3 4 hlatexch1 KHLcAPAGAcGc˙G˙PP˙G˙c
21 13 15 17 18 19 20 syl131anc φY=Zψc˙G˙PP˙G˙c
22 11 21 mpd φY=ZψP˙G˙c