Description: Lemma for dath . Lemma dalem27 expressed differently. (Contributed by NM, 4-Aug-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalem.ph | |
|
dalem.l | |
||
dalem.j | |
||
dalem.a | |
||
dalem.ps | |
||
dalem23.m | |
||
dalem23.o | |
||
dalem23.y | |
||
dalem23.z | |
||
dalem23.g | |
||
Assertion | dalem28 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ph | |
|
2 | dalem.l | |
|
3 | dalem.j | |
|
4 | dalem.a | |
|
5 | dalem.ps | |
|
6 | dalem23.m | |
|
7 | dalem23.o | |
|
8 | dalem23.y | |
|
9 | dalem23.z | |
|
10 | dalem23.g | |
|
11 | 1 2 3 4 5 6 7 8 9 10 | dalem27 | |
12 | 1 | dalemkehl | |
13 | 12 | 3ad2ant1 | |
14 | 5 | dalemccea | |
15 | 14 | 3ad2ant3 | |
16 | 1 | dalempea | |
17 | 16 | 3ad2ant1 | |
18 | 1 2 3 4 5 6 7 8 9 10 | dalem23 | |
19 | 1 2 3 4 5 6 7 8 9 10 | dalem25 | |
20 | 2 3 4 | hlatexch1 | |
21 | 13 15 17 18 19 20 | syl131anc | |
22 | 11 21 | mpd | |