Metamath Proof Explorer


Theorem dalem25

Description: Lemma for dath . Show that the dummy center of perspectivity c is different from auxiliary atom G . (Contributed by NM, 3-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem23.m ˙=meetK
dalem23.o O=LPlanesK
dalem23.y Y=P˙Q˙R
dalem23.z Z=S˙T˙U
dalem23.g G=c˙P˙d˙S
Assertion dalem25 φY=ZψcG

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem23.m ˙=meetK
7 dalem23.o O=LPlanesK
8 dalem23.y Y=P˙Q˙R
9 dalem23.z Z=S˙T˙U
10 dalem23.g G=c˙P˙d˙S
11 1 2 3 4 dalemcnes φCS
12 11 3ad2ant1 φY=ZψCS
13 5 dalemclccjdd ψC˙c˙d
14 13 3ad2ant3 φY=ZψC˙c˙d
15 14 adantr φY=Zψc=GC˙c˙d
16 simpr φY=Zψc=Gc=G
17 1 dalemkelat φKLat
18 17 3ad2ant1 φY=ZψKLat
19 1 dalemkehl φKHL
20 19 3ad2ant1 φY=ZψKHL
21 5 dalemccea ψcA
22 21 3ad2ant3 φY=ZψcA
23 1 dalempea φPA
24 23 3ad2ant1 φY=ZψPA
25 eqid BaseK=BaseK
26 25 3 4 hlatjcl KHLcAPAc˙PBaseK
27 20 22 24 26 syl3anc φY=Zψc˙PBaseK
28 5 dalemddea ψdA
29 28 3ad2ant3 φY=ZψdA
30 1 dalemsea φSA
31 30 3ad2ant1 φY=ZψSA
32 25 3 4 hlatjcl KHLdASAd˙SBaseK
33 20 29 31 32 syl3anc φY=Zψd˙SBaseK
34 25 2 6 latmle2 KLatc˙PBaseKd˙SBaseKc˙P˙d˙S˙d˙S
35 18 27 33 34 syl3anc φY=Zψc˙P˙d˙S˙d˙S
36 10 35 eqbrtrid φY=ZψG˙d˙S
37 3 4 hlatjcom KHLdASAd˙S=S˙d
38 20 29 31 37 syl3anc φY=Zψd˙S=S˙d
39 36 38 breqtrd φY=ZψG˙S˙d
40 39 adantr φY=Zψc=GG˙S˙d
41 16 40 eqbrtrd φY=Zψc=Gc˙S˙d
42 2 3 4 hlatlej2 KHLSAdAd˙S˙d
43 20 31 29 42 syl3anc φY=Zψd˙S˙d
44 43 adantr φY=Zψc=Gd˙S˙d
45 5 4 dalemcceb ψcBaseK
46 45 3ad2ant3 φY=ZψcBaseK
47 25 4 atbase dAdBaseK
48 28 47 syl ψdBaseK
49 48 3ad2ant3 φY=ZψdBaseK
50 25 3 4 hlatjcl KHLSAdAS˙dBaseK
51 20 31 29 50 syl3anc φY=ZψS˙dBaseK
52 25 2 3 latjle12 KLatcBaseKdBaseKS˙dBaseKc˙S˙dd˙S˙dc˙d˙S˙d
53 18 46 49 51 52 syl13anc φY=Zψc˙S˙dd˙S˙dc˙d˙S˙d
54 53 adantr φY=Zψc=Gc˙S˙dd˙S˙dc˙d˙S˙d
55 41 44 54 mpbi2and φY=Zψc=Gc˙d˙S˙d
56 1 4 dalemceb φCBaseK
57 56 3ad2ant1 φY=ZψCBaseK
58 25 3 4 hlatjcl KHLcAdAc˙dBaseK
59 20 22 29 58 syl3anc φY=Zψc˙dBaseK
60 25 2 lattr KLatCBaseKc˙dBaseKS˙dBaseKC˙c˙dc˙d˙S˙dC˙S˙d
61 18 57 59 51 60 syl13anc φY=ZψC˙c˙dc˙d˙S˙dC˙S˙d
62 61 adantr φY=Zψc=GC˙c˙dc˙d˙S˙dC˙S˙d
63 15 55 62 mp2and φY=Zψc=GC˙S˙d
64 1 7 dalemyeb φYBaseK
65 64 3ad2ant1 φY=ZψYBaseK
66 25 2 6 latmlem1 KLatCBaseKS˙dBaseKYBaseKC˙S˙dC˙Y˙S˙d˙Y
67 18 57 51 65 66 syl13anc φY=ZψC˙S˙dC˙Y˙S˙d˙Y
68 67 adantr φY=Zψc=GC˙S˙dC˙Y˙S˙d˙Y
69 63 68 mpd φY=Zψc=GC˙Y˙S˙d˙Y
70 1 2 3 4 7 8 9 dalem17 φY=ZC˙Y
71 70 3adant3 φY=ZψC˙Y
72 25 2 6 latleeqm1 KLatCBaseKYBaseKC˙YC˙Y=C
73 18 57 65 72 syl3anc φY=ZψC˙YC˙Y=C
74 71 73 mpbid φY=ZψC˙Y=C
75 74 adantr φY=Zψc=GC˙Y=C
76 1 2 3 4 9 dalemsly φY=ZS˙Y
77 76 3adant3 φY=ZψS˙Y
78 5 dalem-ddly ψ¬d˙Y
79 78 3ad2ant3 φY=Zψ¬d˙Y
80 25 2 3 6 4 2atjm KHLSAdAYBaseKS˙Y¬d˙YS˙d˙Y=S
81 20 31 29 65 77 79 80 syl132anc φY=ZψS˙d˙Y=S
82 81 adantr φY=Zψc=GS˙d˙Y=S
83 69 75 82 3brtr3d φY=Zψc=GC˙S
84 hlatl KHLKAtLat
85 19 84 syl φKAtLat
86 1 2 3 4 7 8 dalemcea φCA
87 2 4 atcmp KAtLatCASAC˙SC=S
88 85 86 30 87 syl3anc φC˙SC=S
89 88 3ad2ant1 φY=ZψC˙SC=S
90 89 adantr φY=Zψc=GC˙SC=S
91 83 90 mpbid φY=Zψc=GC=S
92 91 ex φY=Zψc=GC=S
93 92 necon3d φY=ZψCScG
94 12 93 mpd φY=ZψcG