Metamath Proof Explorer


Theorem dalemsly

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalemsly.z Z=S˙T˙U
Assertion dalemsly φY=ZS˙Y

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalemsly.z Z=S˙T˙U
6 1 dalemkelat φKLat
7 1 4 dalemseb φSBaseK
8 1 3 4 dalemtjueb φT˙UBaseK
9 eqid BaseK=BaseK
10 9 2 3 latlej1 KLatSBaseKT˙UBaseKS˙S˙T˙U
11 6 7 8 10 syl3anc φS˙S˙T˙U
12 1 dalemkehl φKHL
13 1 dalemsea φSA
14 1 dalemtea φTA
15 1 dalemuea φUA
16 3 4 hlatjass KHLSATAUAS˙T˙U=S˙T˙U
17 12 13 14 15 16 syl13anc φS˙T˙U=S˙T˙U
18 11 17 breqtrrd φS˙S˙T˙U
19 18 5 breqtrrdi φS˙Z
20 19 adantr φY=ZS˙Z
21 simpr φY=ZY=Z
22 20 21 breqtrrd φY=ZS˙Y