Metamath Proof Explorer


Theorem hlatjass

Description: Lattice join is associative. Frequently-used special case of latjass for atoms. (Contributed by NM, 27-Jul-2012)

Ref Expression
Hypotheses hlatjcom.j ˙ = join K
hlatjcom.a A = Atoms K
Assertion hlatjass K HL P A Q A R A P ˙ Q ˙ R = P ˙ Q ˙ R

Proof

Step Hyp Ref Expression
1 hlatjcom.j ˙ = join K
2 hlatjcom.a A = Atoms K
3 hllat K HL K Lat
4 3 adantr K HL P A Q A R A K Lat
5 simpr1 K HL P A Q A R A P A
6 eqid Base K = Base K
7 6 2 atbase P A P Base K
8 5 7 syl K HL P A Q A R A P Base K
9 simpr2 K HL P A Q A R A Q A
10 6 2 atbase Q A Q Base K
11 9 10 syl K HL P A Q A R A Q Base K
12 simpr3 K HL P A Q A R A R A
13 6 2 atbase R A R Base K
14 12 13 syl K HL P A Q A R A R Base K
15 6 1 latjass K Lat P Base K Q Base K R Base K P ˙ Q ˙ R = P ˙ Q ˙ R
16 4 8 11 14 15 syl13anc K HL P A Q A R A P ˙ Q ˙ R = P ˙ Q ˙ R