Metamath Proof Explorer


Theorem dalemswapyz

Description: Lemma for dath . Swap the role of planes Y and Z to allow reuse of analogous proofs. (Contributed by NM, 14-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
Assertion dalemswapyz φKHLCBaseKSATAUAPAQARAZOYO¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙R

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 simp11 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UKHLCBaseK
6 simp13 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙USATAUA
7 simp12 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UPAQARA
8 5 6 7 3jca KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UKHLCBaseKSATAUAPAQARA
9 simp2 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UYOZO
10 9 ancomd KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UZOYO
11 simp32 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙S˙T¬C˙T˙U¬C˙U˙S
12 simp31 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙P˙Q¬C˙Q˙R¬C˙R˙P
13 1 dalemclpjs φC˙P˙S
14 1 dalemkehl φKHL
15 1 dalempea φPA
16 1 dalemsea φSA
17 3 4 hlatjcom KHLPASAP˙S=S˙P
18 14 15 16 17 syl3anc φP˙S=S˙P
19 13 18 breqtrd φC˙S˙P
20 1 dalemclqjt φC˙Q˙T
21 1 dalemqea φQA
22 1 dalemtea φTA
23 3 4 hlatjcom KHLQATAQ˙T=T˙Q
24 14 21 22 23 syl3anc φQ˙T=T˙Q
25 20 24 breqtrd φC˙T˙Q
26 1 dalemclrju φC˙R˙U
27 1 dalemrea φRA
28 1 dalemuea φUA
29 3 4 hlatjcom KHLRAUAR˙U=U˙R
30 14 27 28 29 syl3anc φR˙U=U˙R
31 26 30 breqtrd φC˙U˙R
32 19 25 31 3jca φC˙S˙PC˙T˙QC˙U˙R
33 1 32 sylbir KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UC˙S˙PC˙T˙QC˙U˙R
34 11 12 33 3jca KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙R
35 8 10 34 3jca KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UKHLCBaseKSATAUAPAQARAZOYO¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙R
36 1 35 sylbi φKHLCBaseKSATAUAPAQARAZOYO¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙R