Description: Lemma for dath . Swap the role of planes Y and Z to allow reuse of analogous proofs. (Contributed by NM, 14-Aug-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalema.ph | |
|
dalemc.l | |
||
dalemc.j | |
||
dalemc.a | |
||
Assertion | dalemswapyz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | |
|
2 | dalemc.l | |
|
3 | dalemc.j | |
|
4 | dalemc.a | |
|
5 | simp11 | |
|
6 | simp13 | |
|
7 | simp12 | |
|
8 | 5 6 7 | 3jca | |
9 | simp2 | |
|
10 | 9 | ancomd | |
11 | simp32 | |
|
12 | simp31 | |
|
13 | 1 | dalemclpjs | |
14 | 1 | dalemkehl | |
15 | 1 | dalempea | |
16 | 1 | dalemsea | |
17 | 3 4 | hlatjcom | |
18 | 14 15 16 17 | syl3anc | |
19 | 13 18 | breqtrd | |
20 | 1 | dalemclqjt | |
21 | 1 | dalemqea | |
22 | 1 | dalemtea | |
23 | 3 4 | hlatjcom | |
24 | 14 21 22 23 | syl3anc | |
25 | 20 24 | breqtrd | |
26 | 1 | dalemclrju | |
27 | 1 | dalemrea | |
28 | 1 | dalemuea | |
29 | 3 4 | hlatjcom | |
30 | 14 27 28 29 | syl3anc | |
31 | 26 30 | breqtrd | |
32 | 19 25 31 | 3jca | |
33 | 1 32 | sylbir | |
34 | 11 12 33 | 3jca | |
35 | 8 10 34 | 3jca | |
36 | 1 35 | sylbi | |