Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
5 |
|
simp11 |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> ( K e. HL /\ C e. ( Base ` K ) ) ) |
6 |
|
simp13 |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> ( S e. A /\ T e. A /\ U e. A ) ) |
7 |
|
simp12 |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> ( P e. A /\ Q e. A /\ R e. A ) ) |
8 |
5 6 7
|
3jca |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) ) |
9 |
|
simp2 |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> ( Y e. O /\ Z e. O ) ) |
10 |
9
|
ancomd |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> ( Z e. O /\ Y e. O ) ) |
11 |
|
simp32 |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) ) |
12 |
|
simp31 |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) ) |
13 |
1
|
dalemclpjs |
|- ( ph -> C .<_ ( P .\/ S ) ) |
14 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
15 |
1
|
dalempea |
|- ( ph -> P e. A ) |
16 |
1
|
dalemsea |
|- ( ph -> S e. A ) |
17 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) = ( S .\/ P ) ) |
18 |
14 15 16 17
|
syl3anc |
|- ( ph -> ( P .\/ S ) = ( S .\/ P ) ) |
19 |
13 18
|
breqtrd |
|- ( ph -> C .<_ ( S .\/ P ) ) |
20 |
1
|
dalemclqjt |
|- ( ph -> C .<_ ( Q .\/ T ) ) |
21 |
1
|
dalemqea |
|- ( ph -> Q e. A ) |
22 |
1
|
dalemtea |
|- ( ph -> T e. A ) |
23 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> ( Q .\/ T ) = ( T .\/ Q ) ) |
24 |
14 21 22 23
|
syl3anc |
|- ( ph -> ( Q .\/ T ) = ( T .\/ Q ) ) |
25 |
20 24
|
breqtrd |
|- ( ph -> C .<_ ( T .\/ Q ) ) |
26 |
1
|
dalemclrju |
|- ( ph -> C .<_ ( R .\/ U ) ) |
27 |
1
|
dalemrea |
|- ( ph -> R e. A ) |
28 |
1
|
dalemuea |
|- ( ph -> U e. A ) |
29 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ R e. A /\ U e. A ) -> ( R .\/ U ) = ( U .\/ R ) ) |
30 |
14 27 28 29
|
syl3anc |
|- ( ph -> ( R .\/ U ) = ( U .\/ R ) ) |
31 |
26 30
|
breqtrd |
|- ( ph -> C .<_ ( U .\/ R ) ) |
32 |
19 25 31
|
3jca |
|- ( ph -> ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) |
33 |
1 32
|
sylbir |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) |
34 |
11 12 33
|
3jca |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> ( ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) ) |
35 |
8 10 34
|
3jca |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( Z e. O /\ Y e. O ) /\ ( ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) ) ) |
36 |
1 35
|
sylbi |
|- ( ph -> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( Z e. O /\ Y e. O ) /\ ( ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) ) ) |