Metamath Proof Explorer


Theorem dalem48

Description: Lemma for dath . Analogue of dalem45 for P Q . (Contributed by NM, 16-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem44.m ˙=meetK
dalem44.o O=LPlanesK
dalem44.y Y=P˙Q˙R
dalem44.z Z=S˙T˙U
dalem44.g G=c˙P˙d˙S
dalem44.h H=c˙Q˙d˙T
dalem44.i I=c˙R˙d˙U
Assertion dalem48 φψ¬c˙P˙Q

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem44.m ˙=meetK
7 dalem44.o O=LPlanesK
8 dalem44.y Y=P˙Q˙R
9 dalem44.z Z=S˙T˙U
10 dalem44.g G=c˙P˙d˙S
11 dalem44.h H=c˙Q˙d˙T
12 dalem44.i I=c˙R˙d˙U
13 1 dalemkelat φKLat
14 13 adantr φψKLat
15 5 4 dalemcceb ψcBaseK
16 15 adantl φψcBaseK
17 1 3 4 dalempjqeb φP˙QBaseK
18 17 adantr φψP˙QBaseK
19 1 4 dalemreb φRBaseK
20 19 adantr φψRBaseK
21 5 dalem-ccly ψ¬c˙Y
22 8 breq2i c˙Yc˙P˙Q˙R
23 21 22 sylnib ψ¬c˙P˙Q˙R
24 23 adantl φψ¬c˙P˙Q˙R
25 eqid BaseK=BaseK
26 25 2 3 latnlej2l KLatcBaseKP˙QBaseKRBaseK¬c˙P˙Q˙R¬c˙P˙Q
27 14 16 18 20 24 26 syl131anc φψ¬c˙P˙Q