Metamath Proof Explorer


Theorem dalemeea

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 11-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalemeea.m ˙=meetK
dalemeea.o O=LPlanesK
dalemeea.y Y=P˙Q˙R
dalemeea.z Z=S˙T˙U
dalemeea.e E=Q˙R˙T˙U
Assertion dalemeea φEA

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalemeea.m ˙=meetK
6 dalemeea.o O=LPlanesK
7 dalemeea.y Y=P˙Q˙R
8 dalemeea.z Z=S˙T˙U
9 dalemeea.e E=Q˙R˙T˙U
10 1 2 3 4 7 8 dalemrot φKHLCBaseKQARAPATAUASAQ˙R˙POT˙U˙SO¬C˙Q˙R¬C˙R˙P¬C˙P˙Q¬C˙T˙U¬C˙U˙S¬C˙S˙TC˙Q˙TC˙R˙UC˙P˙S
11 biid KHLCBaseKQARAPATAUASAQ˙R˙POT˙U˙SO¬C˙Q˙R¬C˙R˙P¬C˙P˙Q¬C˙T˙U¬C˙U˙S¬C˙S˙TC˙Q˙TC˙R˙UC˙P˙SKHLCBaseKQARAPATAUASAQ˙R˙POT˙U˙SO¬C˙Q˙R¬C˙R˙P¬C˙P˙Q¬C˙T˙U¬C˙U˙S¬C˙S˙TC˙Q˙TC˙R˙UC˙P˙S
12 eqid Q˙R˙P=Q˙R˙P
13 eqid T˙U˙S=T˙U˙S
14 11 2 3 4 5 6 12 13 9 dalemdea KHLCBaseKQARAPATAUASAQ˙R˙POT˙U˙SO¬C˙Q˙R¬C˙R˙P¬C˙P˙Q¬C˙T˙U¬C˙U˙S¬C˙S˙TC˙Q˙TC˙R˙UC˙P˙SEA
15 10 14 syl φEA