Metamath Proof Explorer


Theorem dalemdea

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 11-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalemdea.m ˙=meetK
dalemdea.o O=LPlanesK
dalemdea.y Y=P˙Q˙R
dalemdea.z Z=S˙T˙U
dalemdea.d D=P˙Q˙S˙T
Assertion dalemdea φDA

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalemdea.m ˙=meetK
6 dalemdea.o O=LPlanesK
7 dalemdea.y Y=P˙Q˙R
8 dalemdea.z Z=S˙T˙U
9 dalemdea.d D=P˙Q˙S˙T
10 1 2 3 4 6 7 dalem2 φP˙Q˙S˙TO
11 1 dalemkehl φKHL
12 1 dalempea φPA
13 1 dalemqea φQA
14 1 dalemrea φRA
15 1 dalemyeo φYO
16 3 4 6 7 lplnri1 KHLPAQARAYOPQ
17 11 12 13 14 15 16 syl131anc φPQ
18 eqid LLinesK=LLinesK
19 3 4 18 llni2 KHLPAQAPQP˙QLLinesK
20 11 12 13 17 19 syl31anc φP˙QLLinesK
21 1 dalemsea φSA
22 1 dalemtea φTA
23 1 dalemuea φUA
24 1 dalemzeo φZO
25 3 4 6 8 lplnri1 KHLSATAUAZOST
26 11 21 22 23 24 25 syl131anc φST
27 3 4 18 llni2 KHLSATASTS˙TLLinesK
28 11 21 22 26 27 syl31anc φS˙TLLinesK
29 3 5 4 18 6 2llnmj KHLP˙QLLinesKS˙TLLinesKP˙Q˙S˙TAP˙Q˙S˙TO
30 11 20 28 29 syl3anc φP˙Q˙S˙TAP˙Q˙S˙TO
31 10 30 mpbird φP˙Q˙S˙TA
32 9 31 eqeltrid φDA