Metamath Proof Explorer


Theorem dalempjsen

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalempnes.o O=LPlanesK
dalempnes.y Y=P˙Q˙R
Assertion dalempjsen φP˙SLLinesK

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalempnes.o O=LPlanesK
6 dalempnes.y Y=P˙Q˙R
7 1 dalemkehl φKHL
8 1 dalempea φPA
9 1 dalemsea φSA
10 1 2 3 4 5 6 dalempnes φPS
11 eqid LLinesK=LLinesK
12 3 4 11 llni2 KHLPASAPSP˙SLLinesK
13 7 8 9 10 12 syl31anc φP˙SLLinesK