Metamath Proof Explorer


Theorem dalempnes

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalempnes.o O=LPlanesK
dalempnes.y Y=P˙Q˙R
Assertion dalempnes φPS

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalempnes.o O=LPlanesK
6 dalempnes.y Y=P˙Q˙R
7 1 dalemkelat φKLat
8 1 4 dalemceb φCBaseK
9 1 4 dalemseb φSBaseK
10 1 4 dalemteb φTBaseK
11 simp321 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙S˙T
12 1 11 sylbi φ¬C˙S˙T
13 eqid BaseK=BaseK
14 13 2 3 latnlej2l KLatCBaseKSBaseKTBaseK¬C˙S˙T¬C˙S
15 7 8 9 10 12 14 syl131anc φ¬C˙S
16 1 dalemclpjs φC˙P˙S
17 oveq1 P=SP˙S=S˙S
18 17 breq2d P=SC˙P˙SC˙S˙S
19 16 18 syl5ibcom φP=SC˙S˙S
20 1 dalemkehl φKHL
21 1 dalemsea φSA
22 3 4 hlatjidm KHLSAS˙S=S
23 20 21 22 syl2anc φS˙S=S
24 23 breq2d φC˙S˙SC˙S
25 19 24 sylibd φP=SC˙S
26 25 necon3bd φ¬C˙SPS
27 15 26 mpd φPS