Metamath Proof Explorer


Theorem dalemsjteb

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemb.j ˙=joinK
dalemb.a A=AtomsK
Assertion dalemsjteb φS˙TBaseK

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemb.j ˙=joinK
3 dalemb.a A=AtomsK
4 1 dalemkehl φKHL
5 1 dalemsea φSA
6 1 dalemtea φTA
7 eqid BaseK=BaseK
8 7 2 3 hlatjcl KHLSATAS˙TBaseK
9 4 5 6 8 syl3anc φS˙TBaseK