Metamath Proof Explorer


Theorem decbin2

Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypothesis decbin.1 A0
Assertion decbin2 4A+2=22A+1

Proof

Step Hyp Ref Expression
1 decbin.1 A0
2 2t1e2 21=2
3 2 oveq2i 22A+21=22A+2
4 2cn 2
5 1 nn0cni A
6 4 5 mulcli 2A
7 ax-1cn 1
8 4 6 7 adddii 22A+1=22A+21
9 1 decbin0 4A=22A
10 9 oveq1i 4A+2=22A+2
11 3 8 10 3eqtr4ri 4A+2=22A+1