Metamath Proof Explorer


Theorem decexp2

Description: Calculate a power of two. (Contributed by Mario Carneiro, 19-Feb-2014)

Ref Expression
Hypotheses decexp2.1 M0
decexp2.2 M+2=N
Assertion decexp2 42M+0=2N

Proof

Step Hyp Ref Expression
1 decexp2.1 M0
2 decexp2.2 M+2=N
3 2cn 2
4 2nn0 20
5 4 1 nn0expcli 2M0
6 5 nn0cni 2M
7 3 6 mulcli 22M
8 expp1 2M02M+1=2M2
9 3 1 8 mp2an 2M+1=2M2
10 6 3 mulcomi 2M2=22M
11 9 10 eqtr2i 22M=2M+1
12 11 oveq1i 22M2=2M+12
13 7 3 12 mulcomli 222M=2M+12
14 5 decbin0 42M=222M
15 peano2nn0 M0M+10
16 1 15 ax-mp M+10
17 expp1 2M+102M+1+1=2M+12
18 3 16 17 mp2an 2M+1+1=2M+12
19 13 14 18 3eqtr4i 42M=2M+1+1
20 4nn0 40
21 20 5 nn0mulcli 42M0
22 21 nn0cni 42M
23 22 addridi 42M+0=42M
24 1 nn0cni M
25 ax-1cn 1
26 24 25 25 addassi M+1+1=M+1+1
27 df-2 2=1+1
28 27 oveq2i M+2=M+1+1
29 26 28 2 3eqtr2ri N=M+1+1
30 29 oveq2i 2N=2M+1+1
31 19 23 30 3eqtr4i 42M+0=2N