Metamath Proof Explorer


Definition df-2reu

Description: Define the double restricted existential uniqueness quantifier. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Assertion df-2reu ∃! x A, y B φ ∃! x A y B φ ∃! y B x A φ

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvar x
1 cA class A
2 vy setvar y
3 cB class B
4 wph wff φ
5 4 0 2 1 3 w2reu wff ∃! x A, y B φ
6 4 2 3 wrex wff y B φ
7 6 0 1 wreu wff ∃! x A y B φ
8 4 0 1 wrex wff x A φ
9 8 2 3 wreu wff ∃! y B x A φ
10 7 9 wa wff ∃! x A y B φ ∃! y B x A φ
11 5 10 wb wff ∃! x A, y B φ ∃! x A y B φ ∃! y B x A φ