Metamath Proof Explorer
		
		
		
		Description:  Define Cartesian products of alternative ordered pairs.  (Contributed by Scott Fenton, 23-Mar-2012)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | df-altxp |  | 
			
		
		
			
				Detailed syntax breakdown
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cA |  | 
						
							| 1 |  | cB |  | 
						
							| 2 | 0 1 | caltxp |  | 
						
							| 3 |  | vz |  | 
						
							| 4 |  | vx |  | 
						
							| 5 |  | vy |  | 
						
							| 6 | 3 | cv |  | 
						
							| 7 | 4 | cv |  | 
						
							| 8 | 5 | cv |  | 
						
							| 9 | 7 8 | caltop |  | 
						
							| 10 | 6 9 | wceq |  | 
						
							| 11 | 10 5 1 | wrex |  | 
						
							| 12 | 11 4 0 | wrex |  | 
						
							| 13 | 12 3 | cab |  | 
						
							| 14 | 2 13 | wceq |  |