Metamath Proof Explorer


Definition df-ana

Description: Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Assertion df-ana Ana=sf𝑝𝑚s|xdomfxintTopOpenfld𝑡sdomf+∞sTaylfx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cana classAna
1 vs setvars
2 cr class
3 cc class
4 2 3 cpr class
5 vf setvarf
6 cpm class𝑝𝑚
7 1 cv setvars
8 3 7 6 co class𝑝𝑚s
9 vx setvarx
10 5 cv setvarf
11 10 cdm classdomf
12 9 cv setvarx
13 cnt classint
14 ctopn classTopOpen
15 ccnfld classfld
16 15 14 cfv classTopOpenfld
17 crest class𝑡
18 16 7 17 co classTopOpenfld𝑡s
19 18 13 cfv classintTopOpenfld𝑡s
20 cpnf class+∞
21 ctayl classTayl
22 7 10 21 co classsTaylf
23 20 12 22 co class+∞sTaylfx
24 10 23 cin classf+∞sTaylfx
25 24 cdm classdomf+∞sTaylfx
26 25 19 cfv classintTopOpenfld𝑡sdomf+∞sTaylfx
27 12 26 wcel wffxintTopOpenfld𝑡sdomf+∞sTaylfx
28 27 9 11 wral wffxdomfxintTopOpenfld𝑡sdomf+∞sTaylfx
29 28 5 8 crab classf𝑝𝑚s|xdomfxintTopOpenfld𝑡sdomf+∞sTaylfx
30 1 4 29 cmpt classsf𝑝𝑚s|xdomfxintTopOpenfld𝑡sdomf+∞sTaylfx
31 0 30 wceq wffAna=sf𝑝𝑚s|xdomfxintTopOpenfld𝑡sdomf+∞sTaylfx