| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cana |
|- Ana |
| 1 |
|
vs |
|- s |
| 2 |
|
cr |
|- RR |
| 3 |
|
cc |
|- CC |
| 4 |
2 3
|
cpr |
|- { RR , CC } |
| 5 |
|
vf |
|- f |
| 6 |
|
cpm |
|- ^pm |
| 7 |
1
|
cv |
|- s |
| 8 |
3 7 6
|
co |
|- ( CC ^pm s ) |
| 9 |
|
vx |
|- x |
| 10 |
5
|
cv |
|- f |
| 11 |
10
|
cdm |
|- dom f |
| 12 |
9
|
cv |
|- x |
| 13 |
|
cnt |
|- int |
| 14 |
|
ctopn |
|- TopOpen |
| 15 |
|
ccnfld |
|- CCfld |
| 16 |
15 14
|
cfv |
|- ( TopOpen ` CCfld ) |
| 17 |
|
crest |
|- |`t |
| 18 |
16 7 17
|
co |
|- ( ( TopOpen ` CCfld ) |`t s ) |
| 19 |
18 13
|
cfv |
|- ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) |
| 20 |
|
cpnf |
|- +oo |
| 21 |
|
ctayl |
|- Tayl |
| 22 |
7 10 21
|
co |
|- ( s Tayl f ) |
| 23 |
20 12 22
|
co |
|- ( +oo ( s Tayl f ) x ) |
| 24 |
10 23
|
cin |
|- ( f i^i ( +oo ( s Tayl f ) x ) ) |
| 25 |
24
|
cdm |
|- dom ( f i^i ( +oo ( s Tayl f ) x ) ) |
| 26 |
25 19
|
cfv |
|- ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom ( f i^i ( +oo ( s Tayl f ) x ) ) ) |
| 27 |
12 26
|
wcel |
|- x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom ( f i^i ( +oo ( s Tayl f ) x ) ) ) |
| 28 |
27 9 11
|
wral |
|- A. x e. dom f x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom ( f i^i ( +oo ( s Tayl f ) x ) ) ) |
| 29 |
28 5 8
|
crab |
|- { f e. ( CC ^pm s ) | A. x e. dom f x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom ( f i^i ( +oo ( s Tayl f ) x ) ) ) } |
| 30 |
1 4 29
|
cmpt |
|- ( s e. { RR , CC } |-> { f e. ( CC ^pm s ) | A. x e. dom f x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom ( f i^i ( +oo ( s Tayl f ) x ) ) ) } ) |
| 31 |
0 30
|
wceq |
|- Ana = ( s e. { RR , CC } |-> { f e. ( CC ^pm s ) | A. x e. dom f x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom ( f i^i ( +oo ( s Tayl f ) x ) ) ) } ) |