Step |
Hyp |
Ref |
Expression |
0 |
|
cana |
|- Ana |
1 |
|
vs |
|- s |
2 |
|
cr |
|- RR |
3 |
|
cc |
|- CC |
4 |
2 3
|
cpr |
|- { RR , CC } |
5 |
|
vf |
|- f |
6 |
|
cpm |
|- ^pm |
7 |
1
|
cv |
|- s |
8 |
3 7 6
|
co |
|- ( CC ^pm s ) |
9 |
|
vx |
|- x |
10 |
5
|
cv |
|- f |
11 |
10
|
cdm |
|- dom f |
12 |
9
|
cv |
|- x |
13 |
|
cnt |
|- int |
14 |
|
ctopn |
|- TopOpen |
15 |
|
ccnfld |
|- CCfld |
16 |
15 14
|
cfv |
|- ( TopOpen ` CCfld ) |
17 |
|
crest |
|- |`t |
18 |
16 7 17
|
co |
|- ( ( TopOpen ` CCfld ) |`t s ) |
19 |
18 13
|
cfv |
|- ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) |
20 |
|
cpnf |
|- +oo |
21 |
|
ctayl |
|- Tayl |
22 |
7 10 21
|
co |
|- ( s Tayl f ) |
23 |
20 12 22
|
co |
|- ( +oo ( s Tayl f ) x ) |
24 |
10 23
|
cin |
|- ( f i^i ( +oo ( s Tayl f ) x ) ) |
25 |
24
|
cdm |
|- dom ( f i^i ( +oo ( s Tayl f ) x ) ) |
26 |
25 19
|
cfv |
|- ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom ( f i^i ( +oo ( s Tayl f ) x ) ) ) |
27 |
12 26
|
wcel |
|- x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom ( f i^i ( +oo ( s Tayl f ) x ) ) ) |
28 |
27 9 11
|
wral |
|- A. x e. dom f x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom ( f i^i ( +oo ( s Tayl f ) x ) ) ) |
29 |
28 5 8
|
crab |
|- { f e. ( CC ^pm s ) | A. x e. dom f x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom ( f i^i ( +oo ( s Tayl f ) x ) ) ) } |
30 |
1 4 29
|
cmpt |
|- ( s e. { RR , CC } |-> { f e. ( CC ^pm s ) | A. x e. dom f x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom ( f i^i ( +oo ( s Tayl f ) x ) ) ) } ) |
31 |
0 30
|
wceq |
|- Ana = ( s e. { RR , CC } |-> { f e. ( CC ^pm s ) | A. x e. dom f x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom ( f i^i ( +oo ( s Tayl f ) x ) ) ) } ) |