Metamath Proof Explorer


Definition df-bj-end

Description: The monoid of endomorphisms on an object of a category. (Contributed by BJ, 4-Apr-2024)

Ref Expression
Assertion df-bj-end Could not format assertion : No typesetting found for |- End = ( c e. Cat |-> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cend Could not format End : No typesetting found for class End with typecode class
1 vc setvarc
2 ccat classCat
3 vx setvarx
4 cbs classBase
5 1 cv setvarc
6 5 4 cfv classBasec
7 cnx classndx
8 7 4 cfv classBasendx
9 3 cv setvarx
10 chom classHom
11 5 10 cfv classHomc
12 9 9 11 co classxHomcx
13 8 12 cop classBasendxxHomcx
14 cplusg class+𝑔
15 7 14 cfv class+ndx
16 9 9 cop classxx
17 cco classcomp
18 5 17 cfv classcompc
19 16 9 18 co classxxcompcx
20 15 19 cop class+ndxxxcompcx
21 13 20 cpr classBasendxxHomcx+ndxxxcompcx
22 3 6 21 cmpt classxBasecBasendxxHomcx+ndxxxcompcx
23 1 2 22 cmpt classcCatxBasecBasendxxHomcx+ndxxxcompcx
24 0 23 wceq Could not format End = ( c e. Cat |-> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) ) : No typesetting found for wff End = ( c e. Cat |-> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) ) with typecode wff