Metamath Proof Explorer


Theorem bj-endval

Description: Value of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-endval.c φCCat
bj-endval.x φXBaseC
Assertion bj-endval Could not format assertion : No typesetting found for |- ( ph -> ( ( End ` C ) ` X ) = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-endval.c φCCat
2 bj-endval.x φXBaseC
3 df-bj-end Could not format End = ( c e. Cat |-> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) ) : No typesetting found for |- End = ( c e. Cat |-> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) ) with typecode |-
4 fveq2 c=CBasec=BaseC
5 fveq2 c=CHomc=HomC
6 5 oveqd c=CxHomcx=xHomCx
7 6 opeq2d c=CBasendxxHomcx=BasendxxHomCx
8 fveq2 c=Ccompc=compC
9 8 oveqd c=Cxxcompcx=xxcompCx
10 9 opeq2d c=C+ndxxxcompcx=+ndxxxcompCx
11 7 10 preq12d c=CBasendxxHomcx+ndxxxcompcx=BasendxxHomCx+ndxxxcompCx
12 4 11 mpteq12dv c=CxBasecBasendxxHomcx+ndxxxcompcx=xBaseCBasendxxHomCx+ndxxxcompCx
13 fvex BaseCV
14 13 mptex xBaseCBasendxxHomCx+ndxxxcompCxV
15 14 a1i φxBaseCBasendxxHomCx+ndxxxcompCxV
16 3 12 1 15 fvmptd3 Could not format ( ph -> ( End ` C ) = ( x e. ( Base ` C ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } ) ) : No typesetting found for |- ( ph -> ( End ` C ) = ( x e. ( Base ` C ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } ) ) with typecode |-
17 id x=Xx=X
18 17 17 oveq12d x=XxHomCx=XHomCX
19 18 opeq2d x=XBasendxxHomCx=BasendxXHomCX
20 17 17 opeq12d x=Xxx=XX
21 20 17 oveq12d x=XxxcompCx=XXcompCX
22 21 opeq2d x=X+ndxxxcompCx=+ndxXXcompCX
23 19 22 preq12d x=XBasendxxHomCx+ndxxxcompCx=BasendxXHomCX+ndxXXcompCX
24 23 adantl φx=XBasendxxHomCx+ndxxxcompCx=BasendxXHomCX+ndxXXcompCX
25 prex BasendxXHomCX+ndxXXcompCXV
26 25 a1i φBasendxXHomCX+ndxXXcompCXV
27 16 24 2 26 fvmptd Could not format ( ph -> ( ( End ` C ) ` X ) = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) : No typesetting found for |- ( ph -> ( ( End ` C ) ` X ) = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) with typecode |-