Metamath Proof Explorer


Definition df-bj-lt

Description: Define the standard (strict) order on the extended reals. (Contributed by BJ, 4-Feb-2023)

Ref Expression
Assertion df-bj-lt <R=x×|yz1stx=y0𝑹2ndx=z0𝑹y<𝑹z-∞××+∞-∞×+∞

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltxr class<R
1 vx setvarx
2 crrbar class
3 2 2 cxp class×
4 vy setvary
5 vz setvarz
6 c1st class1st
7 1 cv setvarx
8 7 6 cfv class1stx
9 4 cv setvary
10 c0r class0𝑹
11 9 10 cop classy0𝑹
12 8 11 wceq wff1stx=y0𝑹
13 c2nd class2nd
14 7 13 cfv class2ndx
15 5 cv setvarz
16 15 10 cop classz0𝑹
17 14 16 wceq wff2ndx=z0𝑹
18 12 17 wa wff1stx=y0𝑹2ndx=z0𝑹
19 cltr class<𝑹
20 9 15 19 wbr wffy<𝑹z
21 18 20 wa wff1stx=y0𝑹2ndx=z0𝑹y<𝑹z
22 21 5 wex wffz1stx=y0𝑹2ndx=z0𝑹y<𝑹z
23 22 4 wex wffyz1stx=y0𝑹2ndx=z0𝑹y<𝑹z
24 23 1 3 crab classx×|yz1stx=y0𝑹2ndx=z0𝑹y<𝑹z
25 cminfty class-∞
26 25 csn class-∞
27 cr class
28 26 27 cxp class-∞×
29 cpinfty class+∞
30 29 csn class+∞
31 27 30 cxp class×+∞
32 28 31 cun class-∞××+∞
33 26 30 cxp class-∞×+∞
34 32 33 cun class-∞××+∞-∞×+∞
35 24 34 cun classx×|yz1stx=y0𝑹2ndx=z0𝑹y<𝑹z-∞××+∞-∞×+∞
36 0 35 wceq wff<R=x×|yz1stx=y0𝑹2ndx=z0𝑹y<𝑹z-∞××+∞-∞×+∞