Step |
Hyp |
Ref |
Expression |
0 |
|
cltxr |
|- |
1 |
|
vx |
|- x |
2 |
|
crrbar |
|- RRbar |
3 |
2 2
|
cxp |
|- ( RRbar X. RRbar ) |
4 |
|
vy |
|- y |
5 |
|
vz |
|- z |
6 |
|
c1st |
|- 1st |
7 |
1
|
cv |
|- x |
8 |
7 6
|
cfv |
|- ( 1st ` x ) |
9 |
4
|
cv |
|- y |
10 |
|
c0r |
|- 0R |
11 |
9 10
|
cop |
|- <. y , 0R >. |
12 |
8 11
|
wceq |
|- ( 1st ` x ) = <. y , 0R >. |
13 |
|
c2nd |
|- 2nd |
14 |
7 13
|
cfv |
|- ( 2nd ` x ) |
15 |
5
|
cv |
|- z |
16 |
15 10
|
cop |
|- <. z , 0R >. |
17 |
14 16
|
wceq |
|- ( 2nd ` x ) = <. z , 0R >. |
18 |
12 17
|
wa |
|- ( ( 1st ` x ) = <. y , 0R >. /\ ( 2nd ` x ) = <. z , 0R >. ) |
19 |
|
cltr |
|- |
20 |
9 15 19
|
wbr |
|- y |
21 |
18 20
|
wa |
|- ( ( ( 1st ` x ) = <. y , 0R >. /\ ( 2nd ` x ) = <. z , 0R >. ) /\ y |
22 |
21 5
|
wex |
|- E. z ( ( ( 1st ` x ) = <. y , 0R >. /\ ( 2nd ` x ) = <. z , 0R >. ) /\ y |
23 |
22 4
|
wex |
|- E. y E. z ( ( ( 1st ` x ) = <. y , 0R >. /\ ( 2nd ` x ) = <. z , 0R >. ) /\ y |
24 |
23 1 3
|
crab |
|- { x e. ( RRbar X. RRbar ) | E. y E. z ( ( ( 1st ` x ) = <. y , 0R >. /\ ( 2nd ` x ) = <. z , 0R >. ) /\ y |
25 |
|
cminfty |
|- minfty |
26 |
25
|
csn |
|- { minfty } |
27 |
|
cr |
|- RR |
28 |
26 27
|
cxp |
|- ( { minfty } X. RR ) |
29 |
|
cpinfty |
|- pinfty |
30 |
29
|
csn |
|- { pinfty } |
31 |
27 30
|
cxp |
|- ( RR X. { pinfty } ) |
32 |
28 31
|
cun |
|- ( ( { minfty } X. RR ) u. ( RR X. { pinfty } ) ) |
33 |
26 30
|
cxp |
|- ( { minfty } X. { pinfty } ) |
34 |
32 33
|
cun |
|- ( ( ( { minfty } X. RR ) u. ( RR X. { pinfty } ) ) u. ( { minfty } X. { pinfty } ) ) |
35 |
24 34
|
cun |
|- ( { x e. ( RRbar X. RRbar ) | E. y E. z ( ( ( 1st ` x ) = <. y , 0R >. /\ ( 2nd ` x ) = <. z , 0R >. ) /\ y |
36 |
0 35
|
wceq |
|- . /\ ( 2nd ` x ) = <. z , 0R >. ) /\ y |