Metamath Proof Explorer


Definition df-bj-lt

Description: Define the standard (strict) order on the extended reals. (Contributed by BJ, 4-Feb-2023)

Ref Expression
Assertion df-bj-lt
|- . /\ ( 2nd ` x ) = <. z , 0R >. ) /\ y 

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltxr
 |-  
1 vx
 |-  x
2 crrbar
 |-  RRbar
3 2 2 cxp
 |-  ( RRbar X. RRbar )
4 vy
 |-  y
5 vz
 |-  z
6 c1st
 |-  1st
7 1 cv
 |-  x
8 7 6 cfv
 |-  ( 1st ` x )
9 4 cv
 |-  y
10 c0r
 |-  0R
11 9 10 cop
 |-  <. y , 0R >.
12 8 11 wceq
 |-  ( 1st ` x ) = <. y , 0R >.
13 c2nd
 |-  2nd
14 7 13 cfv
 |-  ( 2nd ` x )
15 5 cv
 |-  z
16 15 10 cop
 |-  <. z , 0R >.
17 14 16 wceq
 |-  ( 2nd ` x ) = <. z , 0R >.
18 12 17 wa
 |-  ( ( 1st ` x ) = <. y , 0R >. /\ ( 2nd ` x ) = <. z , 0R >. )
19 cltr
 |-  
20 9 15 19 wbr
 |-  y 
21 18 20 wa
 |-  ( ( ( 1st ` x ) = <. y , 0R >. /\ ( 2nd ` x ) = <. z , 0R >. ) /\ y 
22 21 5 wex
 |-  E. z ( ( ( 1st ` x ) = <. y , 0R >. /\ ( 2nd ` x ) = <. z , 0R >. ) /\ y 
23 22 4 wex
 |-  E. y E. z ( ( ( 1st ` x ) = <. y , 0R >. /\ ( 2nd ` x ) = <. z , 0R >. ) /\ y 
24 23 1 3 crab
 |-  { x e. ( RRbar X. RRbar ) | E. y E. z ( ( ( 1st ` x ) = <. y , 0R >. /\ ( 2nd ` x ) = <. z , 0R >. ) /\ y 
25 cminfty
 |-  minfty
26 25 csn
 |-  { minfty }
27 cr
 |-  RR
28 26 27 cxp
 |-  ( { minfty } X. RR )
29 cpinfty
 |-  pinfty
30 29 csn
 |-  { pinfty }
31 27 30 cxp
 |-  ( RR X. { pinfty } )
32 28 31 cun
 |-  ( ( { minfty } X. RR ) u. ( RR X. { pinfty } ) )
33 26 30 cxp
 |-  ( { minfty } X. { pinfty } )
34 32 33 cun
 |-  ( ( ( { minfty } X. RR ) u. ( RR X. { pinfty } ) ) u. ( { minfty } X. { pinfty } ) )
35 24 34 cun
 |-  ( { x e. ( RRbar X. RRbar ) | E. y E. z ( ( ( 1st ` x ) = <. y , 0R >. /\ ( 2nd ` x ) = <. z , 0R >. ) /\ y 
36 0 35 wceq
 |-  . /\ ( 2nd ` x ) = <. z , 0R >. ) /\ y