Metamath Proof Explorer


Definition df-bj-lt

Description: Define the standard (strict) order on the extended reals. (Contributed by BJ, 4-Feb-2023)

Ref Expression
Assertion df-bj-lt <ℝ̅ = ( { 𝑥 ∈ ( ℝ̅ × ℝ̅ ) ∣ ∃ 𝑦𝑧 ( ( ( 1st𝑥 ) = ⟨ 𝑦 , 0R ⟩ ∧ ( 2nd𝑥 ) = ⟨ 𝑧 , 0R ⟩ ) ∧ 𝑦 <R 𝑧 ) } ∪ ( ( ( { -∞ } × ℝ ) ∪ ( ℝ × { +∞ } ) ) ∪ ( { -∞ } × { +∞ } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltxr <ℝ̅
1 vx 𝑥
2 crrbar ℝ̅
3 2 2 cxp ( ℝ̅ × ℝ̅ )
4 vy 𝑦
5 vz 𝑧
6 c1st 1st
7 1 cv 𝑥
8 7 6 cfv ( 1st𝑥 )
9 4 cv 𝑦
10 c0r 0R
11 9 10 cop 𝑦 , 0R
12 8 11 wceq ( 1st𝑥 ) = ⟨ 𝑦 , 0R
13 c2nd 2nd
14 7 13 cfv ( 2nd𝑥 )
15 5 cv 𝑧
16 15 10 cop 𝑧 , 0R
17 14 16 wceq ( 2nd𝑥 ) = ⟨ 𝑧 , 0R
18 12 17 wa ( ( 1st𝑥 ) = ⟨ 𝑦 , 0R ⟩ ∧ ( 2nd𝑥 ) = ⟨ 𝑧 , 0R ⟩ )
19 cltr <R
20 9 15 19 wbr 𝑦 <R 𝑧
21 18 20 wa ( ( ( 1st𝑥 ) = ⟨ 𝑦 , 0R ⟩ ∧ ( 2nd𝑥 ) = ⟨ 𝑧 , 0R ⟩ ) ∧ 𝑦 <R 𝑧 )
22 21 5 wex 𝑧 ( ( ( 1st𝑥 ) = ⟨ 𝑦 , 0R ⟩ ∧ ( 2nd𝑥 ) = ⟨ 𝑧 , 0R ⟩ ) ∧ 𝑦 <R 𝑧 )
23 22 4 wex 𝑦𝑧 ( ( ( 1st𝑥 ) = ⟨ 𝑦 , 0R ⟩ ∧ ( 2nd𝑥 ) = ⟨ 𝑧 , 0R ⟩ ) ∧ 𝑦 <R 𝑧 )
24 23 1 3 crab { 𝑥 ∈ ( ℝ̅ × ℝ̅ ) ∣ ∃ 𝑦𝑧 ( ( ( 1st𝑥 ) = ⟨ 𝑦 , 0R ⟩ ∧ ( 2nd𝑥 ) = ⟨ 𝑧 , 0R ⟩ ) ∧ 𝑦 <R 𝑧 ) }
25 cminfty -∞
26 25 csn { -∞ }
27 cr
28 26 27 cxp ( { -∞ } × ℝ )
29 cpinfty +∞
30 29 csn { +∞ }
31 27 30 cxp ( ℝ × { +∞ } )
32 28 31 cun ( ( { -∞ } × ℝ ) ∪ ( ℝ × { +∞ } ) )
33 26 30 cxp ( { -∞ } × { +∞ } )
34 32 33 cun ( ( ( { -∞ } × ℝ ) ∪ ( ℝ × { +∞ } ) ) ∪ ( { -∞ } × { +∞ } ) )
35 24 34 cun ( { 𝑥 ∈ ( ℝ̅ × ℝ̅ ) ∣ ∃ 𝑦𝑧 ( ( ( 1st𝑥 ) = ⟨ 𝑦 , 0R ⟩ ∧ ( 2nd𝑥 ) = ⟨ 𝑧 , 0R ⟩ ) ∧ 𝑦 <R 𝑧 ) } ∪ ( ( ( { -∞ } × ℝ ) ∪ ( ℝ × { +∞ } ) ) ∪ ( { -∞ } × { +∞ } ) ) )
36 0 35 wceq <ℝ̅ = ( { 𝑥 ∈ ( ℝ̅ × ℝ̅ ) ∣ ∃ 𝑦𝑧 ( ( ( 1st𝑥 ) = ⟨ 𝑦 , 0R ⟩ ∧ ( 2nd𝑥 ) = ⟨ 𝑧 , 0R ⟩ ) ∧ 𝑦 <R 𝑧 ) } ∪ ( ( ( { -∞ } × ℝ ) ∪ ( ℝ × { +∞ } ) ) ∪ ( { -∞ } × { +∞ } ) ) )