| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cltxr |
⊢ <ℝ̅ |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
crrbar |
⊢ ℝ̅ |
| 3 |
2 2
|
cxp |
⊢ ( ℝ̅ × ℝ̅ ) |
| 4 |
|
vy |
⊢ 𝑦 |
| 5 |
|
vz |
⊢ 𝑧 |
| 6 |
|
c1st |
⊢ 1st |
| 7 |
1
|
cv |
⊢ 𝑥 |
| 8 |
7 6
|
cfv |
⊢ ( 1st ‘ 𝑥 ) |
| 9 |
4
|
cv |
⊢ 𝑦 |
| 10 |
|
c0r |
⊢ 0R |
| 11 |
9 10
|
cop |
⊢ 〈 𝑦 , 0R 〉 |
| 12 |
8 11
|
wceq |
⊢ ( 1st ‘ 𝑥 ) = 〈 𝑦 , 0R 〉 |
| 13 |
|
c2nd |
⊢ 2nd |
| 14 |
7 13
|
cfv |
⊢ ( 2nd ‘ 𝑥 ) |
| 15 |
5
|
cv |
⊢ 𝑧 |
| 16 |
15 10
|
cop |
⊢ 〈 𝑧 , 0R 〉 |
| 17 |
14 16
|
wceq |
⊢ ( 2nd ‘ 𝑥 ) = 〈 𝑧 , 0R 〉 |
| 18 |
12 17
|
wa |
⊢ ( ( 1st ‘ 𝑥 ) = 〈 𝑦 , 0R 〉 ∧ ( 2nd ‘ 𝑥 ) = 〈 𝑧 , 0R 〉 ) |
| 19 |
|
cltr |
⊢ <R |
| 20 |
9 15 19
|
wbr |
⊢ 𝑦 <R 𝑧 |
| 21 |
18 20
|
wa |
⊢ ( ( ( 1st ‘ 𝑥 ) = 〈 𝑦 , 0R 〉 ∧ ( 2nd ‘ 𝑥 ) = 〈 𝑧 , 0R 〉 ) ∧ 𝑦 <R 𝑧 ) |
| 22 |
21 5
|
wex |
⊢ ∃ 𝑧 ( ( ( 1st ‘ 𝑥 ) = 〈 𝑦 , 0R 〉 ∧ ( 2nd ‘ 𝑥 ) = 〈 𝑧 , 0R 〉 ) ∧ 𝑦 <R 𝑧 ) |
| 23 |
22 4
|
wex |
⊢ ∃ 𝑦 ∃ 𝑧 ( ( ( 1st ‘ 𝑥 ) = 〈 𝑦 , 0R 〉 ∧ ( 2nd ‘ 𝑥 ) = 〈 𝑧 , 0R 〉 ) ∧ 𝑦 <R 𝑧 ) |
| 24 |
23 1 3
|
crab |
⊢ { 𝑥 ∈ ( ℝ̅ × ℝ̅ ) ∣ ∃ 𝑦 ∃ 𝑧 ( ( ( 1st ‘ 𝑥 ) = 〈 𝑦 , 0R 〉 ∧ ( 2nd ‘ 𝑥 ) = 〈 𝑧 , 0R 〉 ) ∧ 𝑦 <R 𝑧 ) } |
| 25 |
|
cminfty |
⊢ -∞ |
| 26 |
25
|
csn |
⊢ { -∞ } |
| 27 |
|
cr |
⊢ ℝ |
| 28 |
26 27
|
cxp |
⊢ ( { -∞ } × ℝ ) |
| 29 |
|
cpinfty |
⊢ +∞ |
| 30 |
29
|
csn |
⊢ { +∞ } |
| 31 |
27 30
|
cxp |
⊢ ( ℝ × { +∞ } ) |
| 32 |
28 31
|
cun |
⊢ ( ( { -∞ } × ℝ ) ∪ ( ℝ × { +∞ } ) ) |
| 33 |
26 30
|
cxp |
⊢ ( { -∞ } × { +∞ } ) |
| 34 |
32 33
|
cun |
⊢ ( ( ( { -∞ } × ℝ ) ∪ ( ℝ × { +∞ } ) ) ∪ ( { -∞ } × { +∞ } ) ) |
| 35 |
24 34
|
cun |
⊢ ( { 𝑥 ∈ ( ℝ̅ × ℝ̅ ) ∣ ∃ 𝑦 ∃ 𝑧 ( ( ( 1st ‘ 𝑥 ) = 〈 𝑦 , 0R 〉 ∧ ( 2nd ‘ 𝑥 ) = 〈 𝑧 , 0R 〉 ) ∧ 𝑦 <R 𝑧 ) } ∪ ( ( ( { -∞ } × ℝ ) ∪ ( ℝ × { +∞ } ) ) ∪ ( { -∞ } × { +∞ } ) ) ) |
| 36 |
0 35
|
wceq |
⊢ <ℝ̅ = ( { 𝑥 ∈ ( ℝ̅ × ℝ̅ ) ∣ ∃ 𝑦 ∃ 𝑧 ( ( ( 1st ‘ 𝑥 ) = 〈 𝑦 , 0R 〉 ∧ ( 2nd ‘ 𝑥 ) = 〈 𝑧 , 0R 〉 ) ∧ 𝑦 <R 𝑧 ) } ∪ ( ( ( { -∞ } × ℝ ) ∪ ( ℝ × { +∞ } ) ) ∪ ( { -∞ } × { +∞ } ) ) ) |