Metamath Proof Explorer


Definition df-bj-lt

Description: Define the standard (strict) order on the extended reals. (Contributed by BJ, 4-Feb-2023)

Ref Expression
Assertion df-bj-lt < R = x × | y z 1 st x = y 0 𝑹 2 nd x = z 0 𝑹 y < 𝑹 z -∞ × × +∞ -∞ × +∞

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltxr class < R
1 vx setvar x
2 crrbar class
3 2 2 cxp class ×
4 vy setvar y
5 vz setvar z
6 c1st class 1 st
7 1 cv setvar x
8 7 6 cfv class 1 st x
9 4 cv setvar y
10 c0r class 0 𝑹
11 9 10 cop class y 0 𝑹
12 8 11 wceq wff 1 st x = y 0 𝑹
13 c2nd class 2 nd
14 7 13 cfv class 2 nd x
15 5 cv setvar z
16 15 10 cop class z 0 𝑹
17 14 16 wceq wff 2 nd x = z 0 𝑹
18 12 17 wa wff 1 st x = y 0 𝑹 2 nd x = z 0 𝑹
19 cltr class < 𝑹
20 9 15 19 wbr wff y < 𝑹 z
21 18 20 wa wff 1 st x = y 0 𝑹 2 nd x = z 0 𝑹 y < 𝑹 z
22 21 5 wex wff z 1 st x = y 0 𝑹 2 nd x = z 0 𝑹 y < 𝑹 z
23 22 4 wex wff y z 1 st x = y 0 𝑹 2 nd x = z 0 𝑹 y < 𝑹 z
24 23 1 3 crab class x × | y z 1 st x = y 0 𝑹 2 nd x = z 0 𝑹 y < 𝑹 z
25 cminfty class -∞
26 25 csn class -∞
27 cr class
28 26 27 cxp class -∞ ×
29 cpinfty class +∞
30 29 csn class +∞
31 27 30 cxp class × +∞
32 28 31 cun class -∞ × × +∞
33 26 30 cxp class -∞ × +∞
34 32 33 cun class -∞ × × +∞ -∞ × +∞
35 24 34 cun class x × | y z 1 st x = y 0 𝑹 2 nd x = z 0 𝑹 y < 𝑹 z -∞ × × +∞ -∞ × +∞
36 0 35 wceq wff < R = x × | y z 1 st x = y 0 𝑹 2 nd x = z 0 𝑹 y < 𝑹 z -∞ × × +∞ -∞ × +∞