Metamath Proof Explorer


Definition df-bj-mgmhom

Description: Define the set of magma morphisms between two magmas. If domain and codomain are semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. (Contributed by BJ, 10-Feb-2022)

Ref Expression
Assertion df-bj-mgmhom Mgm = x Mgm , y Mgm f Base x Set Base y | u Base x v Base x f u + x v = f u + y f v

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmgmhom class Mgm
1 vx setvar x
2 cmgm class Mgm
3 vy setvar y
4 vf setvar f
5 cbs class Base
6 1 cv setvar x
7 6 5 cfv class Base x
8 csethom class Set
9 3 cv setvar y
10 9 5 cfv class Base y
11 7 10 8 co class Base x Set Base y
12 vu setvar u
13 vv setvar v
14 4 cv setvar f
15 12 cv setvar u
16 cplusg class + 𝑔
17 6 16 cfv class + x
18 13 cv setvar v
19 15 18 17 co class u + x v
20 19 14 cfv class f u + x v
21 15 14 cfv class f u
22 9 16 cfv class + y
23 18 14 cfv class f v
24 21 23 22 co class f u + y f v
25 20 24 wceq wff f u + x v = f u + y f v
26 25 13 7 wral wff v Base x f u + x v = f u + y f v
27 26 12 7 wral wff u Base x v Base x f u + x v = f u + y f v
28 27 4 11 crab class f Base x Set Base y | u Base x v Base x f u + x v = f u + y f v
29 1 3 2 2 28 cmpo class x Mgm , y Mgm f Base x Set Base y | u Base x v Base x f u + x v = f u + y f v
30 0 29 wceq wff Mgm = x Mgm , y Mgm f Base x Set Base y | u Base x v Base x f u + x v = f u + y f v