Step |
Hyp |
Ref |
Expression |
0 |
|
cmgmhom |
⊢ Mgm⟶ |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cmgm |
⊢ Mgm |
3 |
|
vy |
⊢ 𝑦 |
4 |
|
vf |
⊢ 𝑓 |
5 |
|
cbs |
⊢ Base |
6 |
1
|
cv |
⊢ 𝑥 |
7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑥 ) |
8 |
|
csethom |
⊢ Set⟶ |
9 |
3
|
cv |
⊢ 𝑦 |
10 |
9 5
|
cfv |
⊢ ( Base ‘ 𝑦 ) |
11 |
7 10 8
|
co |
⊢ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) |
12 |
|
vu |
⊢ 𝑢 |
13 |
|
vv |
⊢ 𝑣 |
14 |
4
|
cv |
⊢ 𝑓 |
15 |
12
|
cv |
⊢ 𝑢 |
16 |
|
cplusg |
⊢ +g |
17 |
6 16
|
cfv |
⊢ ( +g ‘ 𝑥 ) |
18 |
13
|
cv |
⊢ 𝑣 |
19 |
15 18 17
|
co |
⊢ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) |
20 |
19 14
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) |
21 |
15 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑢 ) |
22 |
9 16
|
cfv |
⊢ ( +g ‘ 𝑦 ) |
23 |
18 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑣 ) |
24 |
21 23 22
|
co |
⊢ ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) |
25 |
20 24
|
wceq |
⊢ ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) |
26 |
25 13 7
|
wral |
⊢ ∀ 𝑣 ∈ ( Base ‘ 𝑥 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) |
27 |
26 12 7
|
wral |
⊢ ∀ 𝑢 ∈ ( Base ‘ 𝑥 ) ∀ 𝑣 ∈ ( Base ‘ 𝑥 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) |
28 |
27 4 11
|
crab |
⊢ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( Base ‘ 𝑥 ) ∀ 𝑣 ∈ ( Base ‘ 𝑥 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) } |
29 |
1 3 2 2 28
|
cmpo |
⊢ ( 𝑥 ∈ Mgm , 𝑦 ∈ Mgm ↦ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( Base ‘ 𝑥 ) ∀ 𝑣 ∈ ( Base ‘ 𝑥 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) } ) |
30 |
0 29
|
wceq |
⊢ Mgm⟶ = ( 𝑥 ∈ Mgm , 𝑦 ∈ Mgm ↦ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( Base ‘ 𝑥 ) ∀ 𝑣 ∈ ( Base ‘ 𝑥 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) } ) |