| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmgmhom |
⊢ Mgm⟶ |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cmgm |
⊢ Mgm |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
|
vf |
⊢ 𝑓 |
| 5 |
|
cbs |
⊢ Base |
| 6 |
1
|
cv |
⊢ 𝑥 |
| 7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑥 ) |
| 8 |
|
csethom |
⊢ Set⟶ |
| 9 |
3
|
cv |
⊢ 𝑦 |
| 10 |
9 5
|
cfv |
⊢ ( Base ‘ 𝑦 ) |
| 11 |
7 10 8
|
co |
⊢ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) |
| 12 |
|
vu |
⊢ 𝑢 |
| 13 |
|
vv |
⊢ 𝑣 |
| 14 |
4
|
cv |
⊢ 𝑓 |
| 15 |
12
|
cv |
⊢ 𝑢 |
| 16 |
|
cplusg |
⊢ +g |
| 17 |
6 16
|
cfv |
⊢ ( +g ‘ 𝑥 ) |
| 18 |
13
|
cv |
⊢ 𝑣 |
| 19 |
15 18 17
|
co |
⊢ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) |
| 20 |
19 14
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) |
| 21 |
15 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑢 ) |
| 22 |
9 16
|
cfv |
⊢ ( +g ‘ 𝑦 ) |
| 23 |
18 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑣 ) |
| 24 |
21 23 22
|
co |
⊢ ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) |
| 25 |
20 24
|
wceq |
⊢ ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) |
| 26 |
25 13 7
|
wral |
⊢ ∀ 𝑣 ∈ ( Base ‘ 𝑥 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) |
| 27 |
26 12 7
|
wral |
⊢ ∀ 𝑢 ∈ ( Base ‘ 𝑥 ) ∀ 𝑣 ∈ ( Base ‘ 𝑥 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) |
| 28 |
27 4 11
|
crab |
⊢ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( Base ‘ 𝑥 ) ∀ 𝑣 ∈ ( Base ‘ 𝑥 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) } |
| 29 |
1 3 2 2 28
|
cmpo |
⊢ ( 𝑥 ∈ Mgm , 𝑦 ∈ Mgm ↦ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( Base ‘ 𝑥 ) ∀ 𝑣 ∈ ( Base ‘ 𝑥 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) } ) |
| 30 |
0 29
|
wceq |
⊢ Mgm⟶ = ( 𝑥 ∈ Mgm , 𝑦 ∈ Mgm ↦ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( Base ‘ 𝑥 ) ∀ 𝑣 ∈ ( Base ‘ 𝑥 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑥 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑦 ) ( 𝑓 ‘ 𝑣 ) ) } ) |