| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmgmhom |
|- -Mgm-> |
| 1 |
|
vx |
|- x |
| 2 |
|
cmgm |
|- Mgm |
| 3 |
|
vy |
|- y |
| 4 |
|
vf |
|- f |
| 5 |
|
cbs |
|- Base |
| 6 |
1
|
cv |
|- x |
| 7 |
6 5
|
cfv |
|- ( Base ` x ) |
| 8 |
|
csethom |
|- -Set-> |
| 9 |
3
|
cv |
|- y |
| 10 |
9 5
|
cfv |
|- ( Base ` y ) |
| 11 |
7 10 8
|
co |
|- ( ( Base ` x ) -Set-> ( Base ` y ) ) |
| 12 |
|
vu |
|- u |
| 13 |
|
vv |
|- v |
| 14 |
4
|
cv |
|- f |
| 15 |
12
|
cv |
|- u |
| 16 |
|
cplusg |
|- +g |
| 17 |
6 16
|
cfv |
|- ( +g ` x ) |
| 18 |
13
|
cv |
|- v |
| 19 |
15 18 17
|
co |
|- ( u ( +g ` x ) v ) |
| 20 |
19 14
|
cfv |
|- ( f ` ( u ( +g ` x ) v ) ) |
| 21 |
15 14
|
cfv |
|- ( f ` u ) |
| 22 |
9 16
|
cfv |
|- ( +g ` y ) |
| 23 |
18 14
|
cfv |
|- ( f ` v ) |
| 24 |
21 23 22
|
co |
|- ( ( f ` u ) ( +g ` y ) ( f ` v ) ) |
| 25 |
20 24
|
wceq |
|- ( f ` ( u ( +g ` x ) v ) ) = ( ( f ` u ) ( +g ` y ) ( f ` v ) ) |
| 26 |
25 13 7
|
wral |
|- A. v e. ( Base ` x ) ( f ` ( u ( +g ` x ) v ) ) = ( ( f ` u ) ( +g ` y ) ( f ` v ) ) |
| 27 |
26 12 7
|
wral |
|- A. u e. ( Base ` x ) A. v e. ( Base ` x ) ( f ` ( u ( +g ` x ) v ) ) = ( ( f ` u ) ( +g ` y ) ( f ` v ) ) |
| 28 |
27 4 11
|
crab |
|- { f e. ( ( Base ` x ) -Set-> ( Base ` y ) ) | A. u e. ( Base ` x ) A. v e. ( Base ` x ) ( f ` ( u ( +g ` x ) v ) ) = ( ( f ` u ) ( +g ` y ) ( f ` v ) ) } |
| 29 |
1 3 2 2 28
|
cmpo |
|- ( x e. Mgm , y e. Mgm |-> { f e. ( ( Base ` x ) -Set-> ( Base ` y ) ) | A. u e. ( Base ` x ) A. v e. ( Base ` x ) ( f ` ( u ( +g ` x ) v ) ) = ( ( f ` u ) ( +g ` y ) ( f ` v ) ) } ) |
| 30 |
0 29
|
wceq |
|- -Mgm-> = ( x e. Mgm , y e. Mgm |-> { f e. ( ( Base ` x ) -Set-> ( Base ` y ) ) | A. u e. ( Base ` x ) A. v e. ( Base ` x ) ( f ` ( u ( +g ` x ) v ) ) = ( ( f ` u ) ( +g ` y ) ( f ` v ) ) } ) |