Metamath Proof Explorer


Definition df-cgr3

Description: The three place congruence predicate. This is an abbreviation for saying that all three pair in a triple are congruent with each other. Three place form of Definition 4.4 of Schwabhauser p. 35. (Contributed by Scott Fenton, 4-Oct-2013)

Ref Expression
Assertion df-cgr3 Cgr3 = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n e 𝔼 n f 𝔼 n p = a b c q = d e f a b Cgr d e a c Cgr d f b c Cgr e f

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccgr3 class Cgr3
1 vp setvar p
2 vq setvar q
3 vn setvar n
4 cn class
5 va setvar a
6 cee class 𝔼
7 3 cv setvar n
8 7 6 cfv class 𝔼 n
9 vb setvar b
10 vc setvar c
11 vd setvar d
12 ve setvar e
13 vf setvar f
14 1 cv setvar p
15 5 cv setvar a
16 9 cv setvar b
17 10 cv setvar c
18 16 17 cop class b c
19 15 18 cop class a b c
20 14 19 wceq wff p = a b c
21 2 cv setvar q
22 11 cv setvar d
23 12 cv setvar e
24 13 cv setvar f
25 23 24 cop class e f
26 22 25 cop class d e f
27 21 26 wceq wff q = d e f
28 15 16 cop class a b
29 ccgr class Cgr
30 22 23 cop class d e
31 28 30 29 wbr wff a b Cgr d e
32 15 17 cop class a c
33 22 24 cop class d f
34 32 33 29 wbr wff a c Cgr d f
35 18 25 29 wbr wff b c Cgr e f
36 31 34 35 w3a wff a b Cgr d e a c Cgr d f b c Cgr e f
37 20 27 36 w3a wff p = a b c q = d e f a b Cgr d e a c Cgr d f b c Cgr e f
38 37 13 8 wrex wff f 𝔼 n p = a b c q = d e f a b Cgr d e a c Cgr d f b c Cgr e f
39 38 12 8 wrex wff e 𝔼 n f 𝔼 n p = a b c q = d e f a b Cgr d e a c Cgr d f b c Cgr e f
40 39 11 8 wrex wff d 𝔼 n e 𝔼 n f 𝔼 n p = a b c q = d e f a b Cgr d e a c Cgr d f b c Cgr e f
41 40 10 8 wrex wff c 𝔼 n d 𝔼 n e 𝔼 n f 𝔼 n p = a b c q = d e f a b Cgr d e a c Cgr d f b c Cgr e f
42 41 9 8 wrex wff b 𝔼 n c 𝔼 n d 𝔼 n e 𝔼 n f 𝔼 n p = a b c q = d e f a b Cgr d e a c Cgr d f b c Cgr e f
43 42 5 8 wrex wff a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n e 𝔼 n f 𝔼 n p = a b c q = d e f a b Cgr d e a c Cgr d f b c Cgr e f
44 43 3 4 wrex wff n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n e 𝔼 n f 𝔼 n p = a b c q = d e f a b Cgr d e a c Cgr d f b c Cgr e f
45 44 1 2 copab class p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n e 𝔼 n f 𝔼 n p = a b c q = d e f a b Cgr d e a c Cgr d f b c Cgr e f
46 0 45 wceq wff Cgr3 = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n e 𝔼 n f 𝔼 n p = a b c q = d e f a b Cgr d e a c Cgr d f b c Cgr e f