Metamath Proof Explorer


Definition df-fs

Description: The general five segment configuration is a generalization of the outer and inner five segment configurations. See brfs and fscgr for its use. Definition 4.15 of Schwabhauser p. 37. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion df-fs FiveSeg = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfs class FiveSeg
1 vp setvar p
2 vq setvar q
3 vn setvar n
4 cn class
5 va setvar a
6 cee class 𝔼
7 3 cv setvar n
8 7 6 cfv class 𝔼 n
9 vb setvar b
10 vc setvar c
11 vd setvar d
12 vx setvar x
13 vy setvar y
14 vz setvar z
15 vw setvar w
16 1 cv setvar p
17 5 cv setvar a
18 9 cv setvar b
19 17 18 cop class a b
20 10 cv setvar c
21 11 cv setvar d
22 20 21 cop class c d
23 19 22 cop class a b c d
24 16 23 wceq wff p = a b c d
25 2 cv setvar q
26 12 cv setvar x
27 13 cv setvar y
28 26 27 cop class x y
29 14 cv setvar z
30 15 cv setvar w
31 29 30 cop class z w
32 28 31 cop class x y z w
33 25 32 wceq wff q = x y z w
34 ccolin class Colinear
35 18 20 cop class b c
36 17 35 34 wbr wff a Colinear b c
37 17 35 cop class a b c
38 ccgr3 class Cgr3
39 27 29 cop class y z
40 26 39 cop class x y z
41 37 40 38 wbr wff a b c Cgr3 x y z
42 17 21 cop class a d
43 ccgr class Cgr
44 26 30 cop class x w
45 42 44 43 wbr wff a d Cgr x w
46 18 21 cop class b d
47 27 30 cop class y w
48 46 47 43 wbr wff b d Cgr y w
49 45 48 wa wff a d Cgr x w b d Cgr y w
50 36 41 49 w3a wff a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w
51 24 33 50 w3a wff p = a b c d q = x y z w a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w
52 51 15 8 wrex wff w 𝔼 n p = a b c d q = x y z w a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w
53 52 14 8 wrex wff z 𝔼 n w 𝔼 n p = a b c d q = x y z w a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w
54 53 13 8 wrex wff y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w
55 54 12 8 wrex wff x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w
56 55 11 8 wrex wff d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w
57 56 10 8 wrex wff c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w
58 57 9 8 wrex wff b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w
59 58 5 8 wrex wff a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w
60 59 3 4 wrex wff n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w
61 60 1 2 copab class p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w
62 0 61 wceq wff FiveSeg = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w a Colinear b c a b c Cgr3 x y z a d Cgr x w b d Cgr y w