Metamath Proof Explorer


Theorem brifs

Description: Binary relation form of the inner five segment predicate. (Contributed by Scott Fenton, 26-Sep-2013)

Ref Expression
Assertion brifs NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDInnerFiveSegEFGHBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGH

Proof

Step Hyp Ref Expression
1 opeq1 a=Aac=Ac
2 1 breq2d a=AbBtwnacbBtwnAc
3 2 anbi1d a=AbBtwnacfBtwnegbBtwnAcfBtwneg
4 1 breq1d a=AacCgregAcCgreg
5 4 anbi1d a=AacCgregbcCgrfgAcCgregbcCgrfg
6 opeq1 a=Aad=Ad
7 6 breq1d a=AadCgrehAdCgreh
8 7 anbi1d a=AadCgrehcdCgrghAdCgrehcdCgrgh
9 3 5 8 3anbi123d a=AbBtwnacfBtwnegacCgregbcCgrfgadCgrehcdCgrghbBtwnAcfBtwnegAcCgregbcCgrfgAdCgrehcdCgrgh
10 breq1 b=BbBtwnAcBBtwnAc
11 10 anbi1d b=BbBtwnAcfBtwnegBBtwnAcfBtwneg
12 opeq1 b=Bbc=Bc
13 12 breq1d b=BbcCgrfgBcCgrfg
14 13 anbi2d b=BAcCgregbcCgrfgAcCgregBcCgrfg
15 11 14 3anbi12d b=BbBtwnAcfBtwnegAcCgregbcCgrfgAdCgrehcdCgrghBBtwnAcfBtwnegAcCgregBcCgrfgAdCgrehcdCgrgh
16 opeq2 c=CAc=AC
17 16 breq2d c=CBBtwnAcBBtwnAC
18 17 anbi1d c=CBBtwnAcfBtwnegBBtwnACfBtwneg
19 16 breq1d c=CAcCgregACCgreg
20 opeq2 c=CBc=BC
21 20 breq1d c=CBcCgrfgBCCgrfg
22 19 21 anbi12d c=CAcCgregBcCgrfgACCgregBCCgrfg
23 opeq1 c=Ccd=Cd
24 23 breq1d c=CcdCgrghCdCgrgh
25 24 anbi2d c=CAdCgrehcdCgrghAdCgrehCdCgrgh
26 18 22 25 3anbi123d c=CBBtwnAcfBtwnegAcCgregBcCgrfgAdCgrehcdCgrghBBtwnACfBtwnegACCgregBCCgrfgAdCgrehCdCgrgh
27 opeq2 d=DAd=AD
28 27 breq1d d=DAdCgrehADCgreh
29 opeq2 d=DCd=CD
30 29 breq1d d=DCdCgrghCDCgrgh
31 28 30 anbi12d d=DAdCgrehCdCgrghADCgrehCDCgrgh
32 31 3anbi3d d=DBBtwnACfBtwnegACCgregBCCgrfgAdCgrehCdCgrghBBtwnACfBtwnegACCgregBCCgrfgADCgrehCDCgrgh
33 opeq1 e=Eeg=Eg
34 33 breq2d e=EfBtwnegfBtwnEg
35 34 anbi2d e=EBBtwnACfBtwnegBBtwnACfBtwnEg
36 33 breq2d e=EACCgregACCgrEg
37 36 anbi1d e=EACCgregBCCgrfgACCgrEgBCCgrfg
38 opeq1 e=Eeh=Eh
39 38 breq2d e=EADCgrehADCgrEh
40 39 anbi1d e=EADCgrehCDCgrghADCgrEhCDCgrgh
41 35 37 40 3anbi123d e=EBBtwnACfBtwnegACCgregBCCgrfgADCgrehCDCgrghBBtwnACfBtwnEgACCgrEgBCCgrfgADCgrEhCDCgrgh
42 breq1 f=FfBtwnEgFBtwnEg
43 42 anbi2d f=FBBtwnACfBtwnEgBBtwnACFBtwnEg
44 opeq1 f=Ffg=Fg
45 44 breq2d f=FBCCgrfgBCCgrFg
46 45 anbi2d f=FACCgrEgBCCgrfgACCgrEgBCCgrFg
47 43 46 3anbi12d f=FBBtwnACfBtwnEgACCgrEgBCCgrfgADCgrEhCDCgrghBBtwnACFBtwnEgACCgrEgBCCgrFgADCgrEhCDCgrgh
48 opeq2 g=GEg=EG
49 48 breq2d g=GFBtwnEgFBtwnEG
50 49 anbi2d g=GBBtwnACFBtwnEgBBtwnACFBtwnEG
51 48 breq2d g=GACCgrEgACCgrEG
52 opeq2 g=GFg=FG
53 52 breq2d g=GBCCgrFgBCCgrFG
54 51 53 anbi12d g=GACCgrEgBCCgrFgACCgrEGBCCgrFG
55 opeq1 g=Ggh=Gh
56 55 breq2d g=GCDCgrghCDCgrGh
57 56 anbi2d g=GADCgrEhCDCgrghADCgrEhCDCgrGh
58 50 54 57 3anbi123d g=GBBtwnACFBtwnEgACCgrEgBCCgrFgADCgrEhCDCgrghBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEhCDCgrGh
59 opeq2 h=HEh=EH
60 59 breq2d h=HADCgrEhADCgrEH
61 opeq2 h=HGh=GH
62 61 breq2d h=HCDCgrGhCDCgrGH
63 60 62 anbi12d h=HADCgrEhCDCgrGhADCgrEHCDCgrGH
64 63 3anbi3d h=HBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEhCDCgrGhBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGH
65 fveq2 n=N𝔼n=𝔼N
66 df-ifs InnerFiveSeg=pq|na𝔼nb𝔼nc𝔼nd𝔼ne𝔼nf𝔼ng𝔼nh𝔼np=abcdq=efghbBtwnacfBtwnegacCgregbcCgrfgadCgrehcdCgrgh
67 9 15 26 32 41 47 58 64 65 66 br8 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDInnerFiveSegEFGHBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGH