Metamath Proof Explorer


Definition df-ifs

Description: The inner five segment configuration is an abbreviation for another congruence condition. See brifs and ifscgr for how it is used. Definition 4.1 of Schwabhauser p. 34. (Contributed by Scott Fenton, 26-Sep-2013)

Ref Expression
Assertion df-ifs InnerFiveSeg = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w

Detailed syntax breakdown

Step Hyp Ref Expression
0 cifs class InnerFiveSeg
1 vp setvar p
2 vq setvar q
3 vn setvar n
4 cn class
5 va setvar a
6 cee class 𝔼
7 3 cv setvar n
8 7 6 cfv class 𝔼 n
9 vb setvar b
10 vc setvar c
11 vd setvar d
12 vx setvar x
13 vy setvar y
14 vz setvar z
15 vw setvar w
16 1 cv setvar p
17 5 cv setvar a
18 9 cv setvar b
19 17 18 cop class a b
20 10 cv setvar c
21 11 cv setvar d
22 20 21 cop class c d
23 19 22 cop class a b c d
24 16 23 wceq wff p = a b c d
25 2 cv setvar q
26 12 cv setvar x
27 13 cv setvar y
28 26 27 cop class x y
29 14 cv setvar z
30 15 cv setvar w
31 29 30 cop class z w
32 28 31 cop class x y z w
33 25 32 wceq wff q = x y z w
34 cbtwn class Btwn
35 17 20 cop class a c
36 18 35 34 wbr wff b Btwn a c
37 26 29 cop class x z
38 27 37 34 wbr wff y Btwn x z
39 36 38 wa wff b Btwn a c y Btwn x z
40 ccgr class Cgr
41 35 37 40 wbr wff a c Cgr x z
42 18 20 cop class b c
43 27 29 cop class y z
44 42 43 40 wbr wff b c Cgr y z
45 41 44 wa wff a c Cgr x z b c Cgr y z
46 17 21 cop class a d
47 26 30 cop class x w
48 46 47 40 wbr wff a d Cgr x w
49 22 31 40 wbr wff c d Cgr z w
50 48 49 wa wff a d Cgr x w c d Cgr z w
51 39 45 50 w3a wff b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w
52 24 33 51 w3a wff p = a b c d q = x y z w b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w
53 52 15 8 wrex wff w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w
54 53 14 8 wrex wff z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w
55 54 13 8 wrex wff y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w
56 55 12 8 wrex wff x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w
57 56 11 8 wrex wff d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w
58 57 10 8 wrex wff c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w
59 58 9 8 wrex wff b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w
60 59 5 8 wrex wff a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w
61 60 3 4 wrex wff n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w
62 61 1 2 copab class p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w
63 0 62 wceq wff InnerFiveSeg = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a c Cgr x z b c Cgr y z a d Cgr x w c d Cgr z w