Metamath Proof Explorer


Definition df-cot

Description: Define the cotangent function. We define it this way for cmpt , which requires the form ( x e. A |-> B ) . The cot function is defined in ISO 80000-2:2009(E) operation 2-13.5 and "NIST Digital Library of Mathematical Functions" section on "Trigonometric Functions" http://dlmf.nist.gov/4.14 . (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion df-cot cot=xy|siny0cosxsinx

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccot classcot
1 vx setvarx
2 vy setvary
3 cc class
4 csin classsin
5 2 cv setvary
6 5 4 cfv classsiny
7 cc0 class0
8 6 7 wne wffsiny0
9 8 2 3 crab classy|siny0
10 ccos classcos
11 1 cv setvarx
12 11 10 cfv classcosx
13 cdiv class÷
14 11 4 cfv classsinx
15 12 14 13 co classcosxsinx
16 1 9 15 cmpt classxy|siny0cosxsinx
17 0 16 wceq wffcot=xy|siny0cosxsinx