Metamath Proof Explorer


Definition df-cyg

Description: Define a cyclic group, which is a group with an element x , called the generator of the group, such that all elements in the group are multiples of x . A generator is usually not unique. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion df-cyg CycGrp=gGrp|xBasegrannngx=Baseg

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccyg classCycGrp
1 vg setvarg
2 cgrp classGrp
3 vx setvarx
4 cbs classBase
5 1 cv setvarg
6 5 4 cfv classBaseg
7 vn setvarn
8 cz class
9 7 cv setvarn
10 cmg class𝑔
11 5 10 cfv classg
12 3 cv setvarx
13 9 12 11 co classngx
14 7 8 13 cmpt classnngx
15 14 crn classrannngx
16 15 6 wceq wffrannngx=Baseg
17 16 3 6 wrex wffxBasegrannngx=Baseg
18 17 1 2 crab classgGrp|xBasegrannngx=Baseg
19 0 18 wceq wffCycGrp=gGrp|xBasegrannngx=Baseg