Metamath Proof Explorer


Definition df-edom

Description: Define Euclidean Domains. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Assertion df-edom Could not format assertion : No typesetting found for |- EDomn = { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cedom Could not format EDomn : No typesetting found for class EDomn with typecode class
1 vd setvard
2 cidom classIDomn
3 ceuf Could not format EuclF : No typesetting found for class EuclF with typecode class
4 1 cv setvard
5 4 3 cfv Could not format ( EuclF ` d ) : No typesetting found for class ( EuclF ` d ) with typecode class
6 ve setvare
7 cbs classBase
8 4 7 cfv classBased
9 vv setvarv
10 6 cv setvare
11 10 wfun wffFune
12 9 cv setvarv
13 c0g class0𝑔
14 4 13 cfv class0d
15 14 csn class0d
16 12 15 cdif classv0d
17 10 16 cima classev0d
18 cc0 class0
19 cico class.
20 cpnf class+∞
21 18 20 19 co class0+∞
22 17 21 wss wffev0d0+∞
23 va setvara
24 vb setvarb
25 vq setvarq
26 vr setvarr
27 23 cv setvara
28 24 cv setvarb
29 cmulr class𝑟
30 4 29 cfv classd
31 25 cv setvarq
32 28 31 30 co classbdq
33 cplusg class+𝑔
34 4 33 cfv class+d
35 26 cv setvarr
36 32 35 34 co classbdq+dr
37 27 36 wceq wffa=bdq+dr
38 35 14 wceq wffr=0d
39 35 10 cfv classer
40 clt class<
41 28 10 cfv classeb
42 39 41 40 wbr wffer<eb
43 38 42 wo wffr=0der<eb
44 37 43 wa wffa=bdq+drr=0der<eb
45 44 26 12 wrex wffrva=bdq+drr=0der<eb
46 45 25 12 wrex wffqvrva=bdq+drr=0der<eb
47 46 24 16 wral wffbv0dqvrva=bdq+drr=0der<eb
48 47 23 12 wral wffavbv0dqvrva=bdq+drr=0der<eb
49 11 22 48 w3a wffFuneev0d0+∞avbv0dqvrva=bdq+drr=0der<eb
50 49 9 8 wsbc wff[˙Based/v]˙Funeev0d0+∞avbv0dqvrva=bdq+drr=0der<eb
51 50 6 5 wsbc Could not format [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) : No typesetting found for wff [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) with typecode wff
52 51 1 2 crab Could not format { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } : No typesetting found for class { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } with typecode class
53 0 52 wceq Could not format EDomn = { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } : No typesetting found for wff EDomn = { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } with typecode wff