Metamath Proof Explorer


Definition df-eigval

Description: Define the eigenvalue function. The range of eigvalT is the set of eigenvalues of Hilbert space operator T . Theorem eigvalcl shows that ( eigvalT )A , the eigenvalue associated with eigenvector A , is a complex number. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion df-eigval eigval=txeigvecttxihxnormx2

Detailed syntax breakdown

Step Hyp Ref Expression
0 cel classeigval
1 vt setvart
2 chba class
3 cmap class𝑚
4 2 2 3 co class
5 vx setvarx
6 cei classeigvec
7 1 cv setvart
8 7 6 cfv classeigvect
9 5 cv setvarx
10 9 7 cfv classtx
11 csp classih
12 10 9 11 co classtxihx
13 cdiv class÷
14 cno classnorm
15 9 14 cfv classnormx
16 cexp class^
17 c2 class2
18 15 17 16 co classnormx2
19 12 18 13 co classtxihxnormx2
20 5 8 19 cmpt classxeigvecttxihxnormx2
21 1 4 20 cmpt classtxeigvecttxihxnormx2
22 0 21 wceq wffeigval=txeigvecttxihxnormx2