Metamath Proof Explorer


Definition df-evl1

Description: Define the evaluation map for the univariate polynomial algebra. The function ( eval1R ) : V --> ( R ^m R ) makes sense when R is a ring, and V is the set of polynomials in ( Poly1R ) . This function maps an element of the formal polynomial algebra (with coefficients in R ) to a function from assignments to the variable from R into an element of R formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Assertion df-evl1 eval1=rVBaser/bxbb1𝑜xyb1𝑜×y1𝑜evalr

Detailed syntax breakdown

Step Hyp Ref Expression
0 ce1 classeval1
1 vr setvarr
2 cvv classV
3 cbs classBase
4 1 cv setvarr
5 4 3 cfv classBaser
6 vb setvarb
7 vx setvarx
8 6 cv setvarb
9 cmap class𝑚
10 c1o class1𝑜
11 8 10 9 co classb1𝑜
12 8 11 9 co classbb1𝑜
13 7 cv setvarx
14 vy setvary
15 14 cv setvary
16 15 csn classy
17 10 16 cxp class1𝑜×y
18 14 8 17 cmpt classyb1𝑜×y
19 13 18 ccom classxyb1𝑜×y
20 7 12 19 cmpt classxbb1𝑜xyb1𝑜×y
21 cevl classeval
22 10 4 21 co class1𝑜evalr
23 20 22 ccom classxbb1𝑜xyb1𝑜×y1𝑜evalr
24 6 5 23 csb classBaser/bxbb1𝑜xyb1𝑜×y1𝑜evalr
25 1 2 24 cmpt classrVBaser/bxbb1𝑜xyb1𝑜×y1𝑜evalr
26 0 25 wceq wffeval1=rVBaser/bxbb1𝑜xyb1𝑜×y1𝑜evalr