Metamath Proof Explorer


Definition df-finxp

Description: Define Cartesian exponentiation on a class.

Note that this definition is limited to finite exponents, since it is defined using nested ordered pairs. If tuples of infinite length are needed, or if they might be needed in the future, use df-ixp or df-map instead. The main advantage of this definition is that it integrates better with functions and relations. For example if R is a subset of ( A ^^ 2o ) , then df-br can be used on it, and df-fv can also be used, and so on.

It's also worth keeping in mind that ( ( U ^^ M ) X. ( U ^^ N ) ) is generally not equal to ( U ^^ ( M +o N ) ) .

This definition is technical. Use finxp1o and finxpsuc for a more standard recursive experience. (Contributed by ML, 16-Oct-2020)

Ref Expression
Assertion df-finxp U↑↑N=y|Nω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN

Detailed syntax breakdown

Step Hyp Ref Expression
0 cU classU
1 cN classN
2 0 1 cfinxp classU↑↑N
3 vy setvary
4 com classω
5 1 4 wcel wffNω
6 c0 class
7 vn setvarn
8 vx setvarx
9 cvv classV
10 7 cv setvarn
11 c1o class1𝑜
12 10 11 wceq wffn=1𝑜
13 8 cv setvarx
14 13 0 wcel wffxU
15 12 14 wa wffn=1𝑜xU
16 9 0 cxp classV×U
17 13 16 wcel wffxV×U
18 10 cuni classn
19 c1st class1st
20 13 19 cfv class1stx
21 18 20 cop classn1stx
22 10 13 cop classnx
23 17 21 22 cif classifxV×Un1stxnx
24 15 6 23 cif classifn=1𝑜xUifxV×Un1stxnx
25 7 8 4 9 24 cmpo classnω,xVifn=1𝑜xUifxV×Un1stxnx
26 3 cv setvary
27 1 26 cop classNy
28 25 27 crdg classrecnω,xVifn=1𝑜xUifxV×Un1stxnxNy
29 1 28 cfv classrecnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
30 6 29 wceq wff=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
31 5 30 wa wffNω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
32 31 3 cab classy|Nω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
33 2 32 wceq wffU↑↑N=y|Nω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN