Metamath Proof Explorer


Theorem dffinxpf

Description: This theorem is the same as Definition df-finxp , except that the large function is replaced by a class variable for brevity. (Contributed by ML, 24-Oct-2020)

Ref Expression
Hypothesis dffinxpf.1 F=nω,xVifn=1𝑜xUifxV×Un1stxnx
Assertion dffinxpf U↑↑N=y|Nω=recFNyN

Proof

Step Hyp Ref Expression
1 dffinxpf.1 F=nω,xVifn=1𝑜xUifxV×Un1stxnx
2 df-finxp U↑↑N=y|Nω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
3 rdgeq1 F=nω,xVifn=1𝑜xUifxV×Un1stxnxrecFNy=recnω,xVifn=1𝑜xUifxV×Un1stxnxNy
4 1 3 ax-mp recFNy=recnω,xVifn=1𝑜xUifxV×Un1stxnxNy
5 4 fveq1i recFNyN=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
6 5 eqeq2i =recFNyN=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
7 6 anbi2i Nω=recFNyNNω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
8 7 abbii y|Nω=recFNyN=y|Nω=recnω,xVifn=1𝑜xUifxV×Un1stxnxNyN
9 2 8 eqtr4i U↑↑N=y|Nω=recFNyN