Metamath Proof Explorer


Theorem dffinxpf

Description: This theorem is the same as Definition df-finxp , except that the large function is replaced by a class variable for brevity. (Contributed by ML, 24-Oct-2020)

Ref Expression
Hypothesis dffinxpf.1 F = n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x
Assertion dffinxpf U ↑↑ N = y | N ω = rec F N y N

Proof

Step Hyp Ref Expression
1 dffinxpf.1 F = n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x
2 df-finxp U ↑↑ N = y | N ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N
3 rdgeq1 F = n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x rec F N y = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y
4 1 3 ax-mp rec F N y = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y
5 4 fveq1i rec F N y N = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N
6 5 eqeq2i = rec F N y N = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N
7 6 anbi2i N ω = rec F N y N N ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N
8 7 abbii y | N ω = rec F N y N = y | N ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N
9 2 8 eqtr4i U ↑↑ N = y | N ω = rec F N y N