| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffinxpf.1 |
|- F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
| 2 |
|
df-finxp |
|- ( U ^^ N ) = { y | ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) } |
| 3 |
|
rdgeq1 |
|- ( F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) -> rec ( F , <. N , y >. ) = rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ) |
| 4 |
1 3
|
ax-mp |
|- rec ( F , <. N , y >. ) = rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) |
| 5 |
4
|
fveq1i |
|- ( rec ( F , <. N , y >. ) ` N ) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) |
| 6 |
5
|
eqeq2i |
|- ( (/) = ( rec ( F , <. N , y >. ) ` N ) <-> (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) |
| 7 |
6
|
anbi2i |
|- ( ( N e. _om /\ (/) = ( rec ( F , <. N , y >. ) ` N ) ) <-> ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) ) |
| 8 |
7
|
abbii |
|- { y | ( N e. _om /\ (/) = ( rec ( F , <. N , y >. ) ` N ) ) } = { y | ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) } |
| 9 |
2 8
|
eqtr4i |
|- ( U ^^ N ) = { y | ( N e. _om /\ (/) = ( rec ( F , <. N , y >. ) ` N ) ) } |