| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffinxpf.1 |  |-  F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 2 |  | df-finxp |  |-  ( U ^^ N ) = { y | ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) } | 
						
							| 3 |  | rdgeq1 |  |-  ( F = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) -> rec ( F , <. N , y >. ) = rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ) | 
						
							| 4 | 1 3 | ax-mp |  |-  rec ( F , <. N , y >. ) = rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) | 
						
							| 5 | 4 | fveq1i |  |-  ( rec ( F , <. N , y >. ) ` N ) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) | 
						
							| 6 | 5 | eqeq2i |  |-  ( (/) = ( rec ( F , <. N , y >. ) ` N ) <-> (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) | 
						
							| 7 | 6 | anbi2i |  |-  ( ( N e. _om /\ (/) = ( rec ( F , <. N , y >. ) ` N ) ) <-> ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) ) | 
						
							| 8 | 7 | abbii |  |-  { y | ( N e. _om /\ (/) = ( rec ( F , <. N , y >. ) ` N ) ) } = { y | ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) } | 
						
							| 9 | 2 8 | eqtr4i |  |-  ( U ^^ N ) = { y | ( N e. _om /\ (/) = ( rec ( F , <. N , y >. ) ` N ) ) } |