Metamath Proof Explorer


Theorem dffinxpf

Description: This theorem is the same as Definition df-finxp , except that the large function is replaced by a class variable for brevity. (Contributed by ML, 24-Oct-2020)

Ref Expression
Hypothesis dffinxpf.1 𝐹 = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
Assertion dffinxpf ( 𝑈 ↑↑ 𝑁 ) = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) }

Proof

Step Hyp Ref Expression
1 dffinxpf.1 𝐹 = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
2 df-finxp ( 𝑈 ↑↑ 𝑁 ) = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) }
3 rdgeq1 ( 𝐹 = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) → rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) = rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) )
4 1 3 ax-mp rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) = rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ )
5 4 fveq1i ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 )
6 5 eqeq2i ( ∅ = ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ↔ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) )
7 6 anbi2i ( ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) ↔ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) )
8 7 abbii { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) } = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) }
9 2 8 eqtr4i ( 𝑈 ↑↑ 𝑁 ) = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , ⟨ 𝑁 , 𝑦 ⟩ ) ‘ 𝑁 ) ) }