| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffinxpf.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 2 |  | df-finxp | ⊢ ( 𝑈 ↑↑ 𝑁 )  =  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } | 
						
							| 3 |  | rdgeq1 | ⊢ ( 𝐹  =  ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) )  →  rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 )  =  rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ) | 
						
							| 4 | 1 3 | ax-mp | ⊢ rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 )  =  rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) | 
						
							| 5 | 4 | fveq1i | ⊢ ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 )  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) | 
						
							| 6 | 5 | eqeq2i | ⊢ ( ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 )  ↔  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) | 
						
							| 7 | 6 | anbi2i | ⊢ ( ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) )  ↔  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) ) | 
						
							| 8 | 7 | abbii | ⊢ { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) }  =  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } | 
						
							| 9 | 2 8 | eqtr4i | ⊢ ( 𝑈 ↑↑ 𝑁 )  =  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( 𝐹 ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } |