| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffinxpf.1 |
⊢ 𝐹 = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) |
| 2 |
|
df-finxp |
⊢ ( 𝑈 ↑↑ 𝑁 ) = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } |
| 3 |
|
rdgeq1 |
⊢ ( 𝐹 = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) → rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) = rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ) |
| 4 |
1 3
|
ax-mp |
⊢ rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) = rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) |
| 5 |
4
|
fveq1i |
⊢ ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) |
| 6 |
5
|
eqeq2i |
⊢ ( ∅ = ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ↔ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) |
| 7 |
6
|
anbi2i |
⊢ ( ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ↔ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ) |
| 8 |
7
|
abbii |
⊢ { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } |
| 9 |
2 8
|
eqtr4i |
⊢ ( 𝑈 ↑↑ 𝑁 ) = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( 𝐹 , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } |