Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
⊢ ( 𝑈 = 𝑉 → ( 𝑥 ∈ 𝑈 ↔ 𝑥 ∈ 𝑉 ) ) |
2 |
1
|
anbi2d |
⊢ ( 𝑈 = 𝑉 → ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) ↔ ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑉 ) ) ) |
3 |
|
xpeq2 |
⊢ ( 𝑈 = 𝑉 → ( V × 𝑈 ) = ( V × 𝑉 ) ) |
4 |
3
|
eleq2d |
⊢ ( 𝑈 = 𝑉 → ( 𝑥 ∈ ( V × 𝑈 ) ↔ 𝑥 ∈ ( V × 𝑉 ) ) ) |
5 |
4
|
ifbid |
⊢ ( 𝑈 = 𝑉 → if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) = if ( 𝑥 ∈ ( V × 𝑉 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) |
6 |
2 5
|
ifbieq2d |
⊢ ( 𝑈 = 𝑉 → if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) = if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑉 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑉 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) |
7 |
6
|
mpoeq3dv |
⊢ ( 𝑈 = 𝑉 → ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑉 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑉 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) ) |
8 |
|
rdgeq1 |
⊢ ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑉 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑉 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) → rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) = rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑉 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑉 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑈 = 𝑉 → rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) = rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑉 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑉 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ) |
10 |
9
|
fveq1d |
⊢ ( 𝑈 = 𝑉 → ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑉 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑉 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝑈 = 𝑉 → ( ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ↔ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑉 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑉 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ) |
12 |
11
|
anbi2d |
⊢ ( 𝑈 = 𝑉 → ( ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ↔ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑉 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑉 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) ) ) |
13 |
12
|
abbidv |
⊢ ( 𝑈 = 𝑉 → { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑉 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑉 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } ) |
14 |
|
df-finxp |
⊢ ( 𝑈 ↑↑ 𝑁 ) = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } |
15 |
|
df-finxp |
⊢ ( 𝑉 ↑↑ 𝑁 ) = { 𝑦 ∣ ( 𝑁 ∈ ω ∧ ∅ = ( rec ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o ∧ 𝑥 ∈ 𝑉 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑉 ) , 〈 ∪ 𝑛 , ( 1st ‘ 𝑥 ) 〉 , 〈 𝑛 , 𝑥 〉 ) ) ) , 〈 𝑁 , 𝑦 〉 ) ‘ 𝑁 ) ) } |
16 |
13 14 15
|
3eqtr4g |
⊢ ( 𝑈 = 𝑉 → ( 𝑈 ↑↑ 𝑁 ) = ( 𝑉 ↑↑ 𝑁 ) ) |