| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq2 | ⊢ ( 𝑈  =  𝑉  →  ( 𝑥  ∈  𝑈  ↔  𝑥  ∈  𝑉 ) ) | 
						
							| 2 | 1 | anbi2d | ⊢ ( 𝑈  =  𝑉  →  ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 )  ↔  ( 𝑛  =  1o  ∧  𝑥  ∈  𝑉 ) ) ) | 
						
							| 3 |  | xpeq2 | ⊢ ( 𝑈  =  𝑉  →  ( V  ×  𝑈 )  =  ( V  ×  𝑉 ) ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝑈  =  𝑉  →  ( 𝑥  ∈  ( V  ×  𝑈 )  ↔  𝑥  ∈  ( V  ×  𝑉 ) ) ) | 
						
							| 5 | 4 | ifbid | ⊢ ( 𝑈  =  𝑉  →  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 )  =  if ( 𝑥  ∈  ( V  ×  𝑉 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) | 
						
							| 6 | 2 5 | ifbieq2d | ⊢ ( 𝑈  =  𝑉  →  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) )  =  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑉 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑉 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) | 
						
							| 7 | 6 | mpoeq3dv | ⊢ ( 𝑈  =  𝑉  →  ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) )  =  ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑉 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑉 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ) | 
						
							| 8 |  | rdgeq1 | ⊢ ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) )  =  ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑉 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑉 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) )  →  rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 )  =  rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑉 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑉 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑈  =  𝑉  →  rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 )  =  rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑉 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑉 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( 𝑈  =  𝑉  →  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 )  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑉 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑉 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) | 
						
							| 11 | 10 | eqeq2d | ⊢ ( 𝑈  =  𝑉  →  ( ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 )  ↔  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑉 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑉 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) ) | 
						
							| 12 | 11 | anbi2d | ⊢ ( 𝑈  =  𝑉  →  ( ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) )  ↔  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑉 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑉 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) ) ) | 
						
							| 13 | 12 | abbidv | ⊢ ( 𝑈  =  𝑉  →  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) }  =  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑉 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑉 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } ) | 
						
							| 14 |  | df-finxp | ⊢ ( 𝑈 ↑↑ 𝑁 )  =  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑈 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑈 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } | 
						
							| 15 |  | df-finxp | ⊢ ( 𝑉 ↑↑ 𝑁 )  =  { 𝑦  ∣  ( 𝑁  ∈  ω  ∧  ∅  =  ( rec ( ( 𝑛  ∈  ω ,  𝑥  ∈  V  ↦  if ( ( 𝑛  =  1o  ∧  𝑥  ∈  𝑉 ) ,  ∅ ,  if ( 𝑥  ∈  ( V  ×  𝑉 ) ,  〈 ∪  𝑛 ,  ( 1st  ‘ 𝑥 ) 〉 ,  〈 𝑛 ,  𝑥 〉 ) ) ) ,  〈 𝑁 ,  𝑦 〉 ) ‘ 𝑁 ) ) } | 
						
							| 16 | 13 14 15 | 3eqtr4g | ⊢ ( 𝑈  =  𝑉  →  ( 𝑈 ↑↑ 𝑁 )  =  ( 𝑉 ↑↑ 𝑁 ) ) |